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Course Presentation

Evaluation
@ 7 seminars, 6 laboratories;
@ AS =seminar activity (max 10 points);
@ AL = laboratory activtiy (max 10 points);

@ T = written test during the examination session (a grade from 1 la
10) Final score:
P=25*AS+25*AL+5*T

@ Minimal conditions for passing the exam: (AS + AL) > 10, AS >
4, AL>4, T >5, P> 50;

@ The final grade will be established according to the Gauss
distribution
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Course Presentation

Evaluation

@ SA = seminar activity (max 10 points):

e the activity during the seminars - problem solving (max 2 points) +
bonuses

o written test (max 8 points)
@ LA = laboratory activity:
e project
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Course Presentation

Course Content (Part 1): Formal Languages and

G

Automata

Linear bounded automata
L1 (context itive |
Turing Machines
L0 languages (recursive enumerable languages)
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Course Content (Part 1): Formal Languages and
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Course Presentation
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Course Content (Part 1): Formal Languages and
Automata

@ Languages and grammars

@ Regular languages; regular grammars, automata , regular
expressions

@ Context-free languages; context-free grammars, pushdown
automata
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Course Presentation

Formal languages and automata: applications
@ grammars

compilers : the syntax of programming languages
describe specific input for applications
describe the structure of XML documents (DTD)

Artificial Intelligence: in NLP (natural language processing)

@ automata

compilers: lexical analysis

text processors: identification of specific patterns

modelling and verification of software and hardware systems
modelling network communication protocols

modelling of computer network protocols

Al: robotics

@ regular expressions

describe and validate input in various applications
identification of patterns in text

tools in operating systems (grep, sed, awk)
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Course Presentation

Course Content (part II)

@ Programming languages: design and implementation
@ Lexical analysis
@ Syntactic analysis

@ Translation to intermediary code
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Course Presentation
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Formal languages

Basic notions

@ Alphabet: (V) a finite set of symbols
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Basic notions

@ Alphabet: (V) a finite set of symbols
@ Word: a finite range/succession of symbols
o the empty word is denoted by € (or \).
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Formal languages

Basic notions

@ Alphabet: (V) a finite set of symbols
@ Word: a finite range/succession of symbols
o the empty word is denoted by € (or \).

@ The length of word u: the number of symbols. Notation: |ul. |¢] = 0

@ V* - the set of all the words over alphabet V, including e.
{0,1}* = {¢,0,1,00,01,10,11,000,001, ...}
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Formal languages

Basic notions

@ Alphabet: (V) a finite set of symbols
@ Word: a finite range/succession of symbols
o the empty word is denoted by € (or \).

@ The length of word u: the number of symbols. Notation: |ul. |¢] = 0
@ V* - the set of all the words over alphabet V, including e.

{0,1}* = {¢,0,1,00,01,10,11,000,001, ...}
@ VT -the set of all the non-empty words over alphabet V

{0,1}* ={0,1,00,01,10,11,000,001,...}
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Formal languages

Operations with words

@ Concatenation of two words x, y: x - y
x =0100, y =100, x - y = 0100100
x =000,y =¢x-y =000
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Formal languages

Operations with words

@ Concatenation of two words x, y: x - y
x =0100, y =100, x - y = 0100100
x =000,y =¢x-y =000

@ Concatenation is an associative operation
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Formal languages

Operations with words

@ Concatenation of two words x, y: x - y
x =0100, y =100, x - y = 0100100
x =000,y =¢x-y =000
@ Concatenation is an associative operation

@ (V* -)is a monoid (e is the identity element), the free monoid
generated by V.
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Formal languages

Languages

@ Let V be an alphabet. A subset L C V* is a formal language over
alphabet V if L has a finite (mathematical) description.
@ A description can be:
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Formal languages

Languages

@ Let V be an alphabet. A subset L C V* is a formal language over
alphabet V if L has a finite (mathematical) description.
@ A description can be:
e informal:
@ the set of words over alphabet {0, 1} which contain an even number
of 0.
o L={xe VT':|x|iseven}.
e {a"b"|ne N}.
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Formal languages

Languages

@ Let V be an alphabet. A subset L C V* is a formal language over
alphabet V if L has a finite (mathematical) description.
@ A description can be:
e informal:
@ the set of words over alphabet {0, 1} which contain an even number
of 0.
o L={xe VT':|x|iseven}.
e {a"b"|ne N}.
o formal (mathematical):
@ an inductive description
@ a generative description (using grammars)
@ a description using recognizers (finite automata, pushdown automata,
etc.)
@ an algebraic description (regular expressions)
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Formal languages

Language Operations

@ Set operations (union, intersection)

@ Product of languages: L1 - Ly ={u-viju € Ly,v € L}

Example:
Ly={a",n>1}, L, ={b",n>1}
Ly-Lo={ab",n>1,m>1}
@ lteration (Kleene product): L* = | J,~o L", where:
o L0={¢} B
° Ln+1 = [Nn.L

Example:
L={a}, °={e},L' =L, [?>={aa},...,L"={a"}
L*={a",.n>0}
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Grammars

Formal Languages, Automata and Compilers
Lecture 1

e Grammars
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Grammars

Grammars

Definition 1
A grammar is a system G= (N, T, S, P), where:
@ N and T are disjoint alphabets:
e N is the set of non-terminals
o T is the set of terminals

@ S e N is the start symbol (initial non-terminal)

@ P is a finite set of rules (productions): x — y, where
x,y € (NUT)* and x contains at least a non-terminal.
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Grammars

Derivation

Definition 2

LetG= (N, T,S,P) beagrammaru,v e (NUT)*.

v is directly derived (in one step) from u by application of rule x — y,
(written as u = v), if 3p,q € (N U T)* such that u = pxq and v = pyq.
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Derivation

Definition 2

LetG= (N, T,S,P) beagrammaru,v e (NUT)*.

v is directly derived (in one step) from u by application of rule x — y,
(written as u = v), if 3p,q € (N U T)* such that u = pxq and v = pyq.

@ Ifu;y = un... = up,n> 1, we say that u, is derived from uy in
grammar G and write: uy =T up.
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Grammars

Derivation

Definition 2

LetG= (N, T,S,P) beagrammaru,v e (NUT)*.

v is directly derived (in one step) from u by application of rule x — y,
(written as u = v), if 3p,q € (N U T)* such that u = pxq and v = pyq.

@ Ifu;y = un... = up,n> 1, we say that u, is derived from uy in
grammar G and write: uy =T up.

@ Wewriteu=*vifu=Tvoru=v.
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Grammars

Generated Language

Definition 3
The language generated by grammar G is:

LG)={we T S="w}
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Grammars

Generated Language

Definition 3
The language generated by grammar G is:

LG)={we T S="w}

Definition 4
Two grammars Gy and Gy are equivalent if L(Gy) = L(G2).

LFAC (2024-25) Lecture 1 20/42



Grammars

Example

@ G=(N,T,S,P), N={S,S,X}, T={a,b,c}, P consists of:
Q@ S— abc
Q S— aSiXc
© S — abc
Q cX - Xe
Q@ bX — bb
e L(G) = {abc, 8b°c?}

@ What is the equivalent grammar with only one non-terminal?
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Grammars

Example

o L={a"b"\n>1}
@ Inductive definition:

e abel
o ifXelL thenaXbelL
@ No other word belongs to L
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Grammars

Example

o L={a"b"\n>1}
@ Inductive definition:
e abel
o ifXelL thenaXbe L
@ No other word belongs to L
@ Generative definition:
e G=({X},{a b}, X, P), where P ={X — aXb, X — ab}
e Derivation of the word ab® from the start symbol:
X = aXb = a(aXb)b = aa(ab)bb
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Grammars

Example

o L={a"b"c"\n>1}
e =(N,T,S5,P), N={S, X}, T={a,b,c}, Pcontains the rules:
Q@ S— abc
Q@ S— aSxc
Q cX— X
Q bX > bb
@ Derivation of word a®b°c®:
S =@ aSXc =@ aaSXcXc =) aaabcXcXc =)
aaabXccXc =*) aaabbceXc =) aaabbeXcc =)
aaabbXccc =¥ aaabbbcce = a®b3c?
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Chomsky Hierarchy

Formal Languages, Automata and Compilers
Lecture 1

e Chomsky Hierarchy
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Chomsky Hierarchy

@ Type 0 grammars (unrestricted grammars)
There are no restrictions on the rules;
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Chomsky Hierarchy

@ Type 0 grammars (unrestricted grammars)
There are no restrictions on the rules;

©@ Type 1 grammars (context-sensitive grammars)
rules of the form pxq — pygwhere x ¢ N, y #¢, p,g € (NU T)*,

S — ¢ (if this rule exists, S must not appear on the right side of the
rules)
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Chomsky Hierarchy

@ Type 0 grammars (unrestricted grammars)
There are no restrictions on the rules;

©@ Type 1 grammars (context-sensitive grammars)
rules of the form pxq — pygwhere x ¢ N, y #¢, p,g € (NU T)*,
S — ¢ (if this rule exists, S must not appear on the right side of the
rules)

© Type 2 grammars (context-free grammars)
rules of the form A — y where Ac Nand y € (NU T)*;

© Type 3 grammars (regular)
rules of the form A — uor A— uBwhere A Be Nand u e T*.
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Chomsky Hierarchy

Examples
Type 1: pxq — pygwhere x e N, y # ¢, p,ge (NUT)*, S — ¢
@ G=(N,T,5,P),N={S5,A B}, T={a,b,c}, P:
(1)S — aaAc
(2)aAc — aAbBc
(3)bB — bBc
(4)Bc — Abc
(5)A— a
Type 1 grammar
@ G=(N,T,S,P),N={S, X}, T={ab,c}, P:
(1)S — abc
(2)S — aSXc
(8)eX — Xc (itis not a type 1 rule!l, the grammar is a type 0 grammar)
(4)bX — bb
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Chomsky Hierarchy

Examples
Type2: A— ywhere Ac Nandy € (NU T)*
Type 3: A— uorA— uBwhere ABe Nandu e T*.
° G
(1)x — ax
(1)x — xb
(2)x — €
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Chomsky Hierarchy

Examples
Type2: A— ywhere Ac Nandy € (NU T)*
Type 3: A— uorA— uBwhere ABe Nandu e T*.
e G:
(1)x — ax
(1)x — xb
(2)x — €
(Type 2)
° G
(1)x — ax
(2)x — bx
B)x — €
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Chomsky Hierarchy

Examples

Type2: A— ywhere Ac Nandy € (NU T)*
Type 3: A— uorA— uBwhere ABe Nandu e T*.

e G:
(1)x — ax
(1)x — xb
(2)x — €
(Type 2)
° G
(1)x — ax
(2)x — bx
B)x — €
(Type 3)
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Chomsky Hierarchy

Classification of languages

@ Alanguage L is of type j if there exists a grammar G of type j such
that L(G) = L, where j € {0,1,2,3}.
@ [; denotes the set of all languages of type j, where j € {0,1,2,3}.
@ ltholds that: L3 C Lo C L1 C Ly
@ The inclusions are strict:
e any language of type j + 1 is also of type j € {0, 1,2}
o there exists languages of type j that are not of type j + 1,
j€{0.,1,2}

LFAC (2024-25) Lecture 1 28/42



Type 3 Grammars and Languages

Formal Languages, Automata and Compilers
Lecture 1

e Type 3 Grammars and Languages
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Type 3 Grammars and Languages

@ Agrammar G= (N, T, S, P) is a type 3 grammar if all the rules
are of the form: A —> uor A— uBwhere AABe Nand u e T*.

@ Type 3 grammars are also called regular grammars;

@ Example: Let
G=({A B}, {a,b},A, {A— aA,A— B,B— bB,B — ¢})
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Type 3 Grammars and Languages

@ Agrammar G= (N, T, S, P) is a type 3 grammar if all the rules
are of the form: A —> uor A— uBwhere AABe Nand u e T*.

@ Type 3 grammars are also called regular grammars;

@ Example: Let
G=({AB},{a,b},A {A— aA,A— B,B— bB,B — ¢})
L(G)={a"b",n,m> 0}
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Type 3 Grammars and Languages

Examples

e G=({D},{0,1,...,9},D,P)
where P is:
D — 0D|1D|2Dj...|9D
D—0|1]...]9

e G= ({A B}, {l,d},A,P)where P is:
A — IB, B — IB|dB|e (I = latter, d = figure)
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Examples

e G=({D},{0,1,..,9},D, P)
where P is:
D — 0D|1Dj2D|...|9D
D—0[1]...]9
o G=({A B}, {l,d},A P)wherePis:
A — IB, B — IB|dBje (I = latter, d = figure)
L(G): the set of identifiers
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Type 3 Grammars and Languages

The Normal Form for Regular Grammars

@ Aregular grammar G is in normal form if all the rules are of the
form A— aor A— aB, where a€ T, and, if necessary S — ¢ (in
this case S does not appear in the right side of the rules).

@ For any type 3 grammar there exists an equivalent grammar in
normal form.
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Type 3 Grammars and Languages

The Normal Form for Regular Grammars

@ The equivalent grammar in normal form can be obtained as
follows:

o Remove (replace) the rules of the form A — B (unit rules) and
A — € (e-rules), except, if necessary, S — e.

o Anyrule A— ajax...apisreplacedby: A — a1By, By — aBo, .. .,
B, o—an_1Bn_1,Bn-1 —an,n>1,By,...,B,_1 are new
non-terminals.

o Anyrule A— ajax...a,Bis replaced by: A — a;B;y,

By — aB.,...,By_o— an_1Bn_1,Bh_1 — apnB,n>1,By,...,Bn_4
are new non-terminals

e The new grammar generates the same language
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Closure Properties for Regular Languages

Formal Languages, Automata and Compilers
Lecture 1

e Closure Properties for Regular Languages
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Closure Properties for Regular Languages

Let L, Ly, Lo be regular languages.
Then, the following languages are also regular languages:

o L{UL
o Ly Lo
o L*

o LinL
e L1\ Lp
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Closure Properties for Regular Languages

Closure under union

Let L, Ly, Ly be regular languages.

Let Gi = (N4, T1, 51, P1) and Go = (No, T2, Sz, P>) be type 3
grammars Ly = L(Gy), Lo = L(Go).

Assume N; N N2 = ().

Closure under union: it can be proved that L1 U Ly € L3:
Grammar G = (N1 UN> U {S}, TiUT,, S, PiUPU {S - 51,8 — 52})
is of type 3 and generates Ly U Lo

LFAC (2024-25) Lecture 1 36/42



Closure Properties for Regular Languages

Closure under product

Let Ly, Lo be regular languages.
Let Gi = (N4, T1, 51, P1) and Go = (N», T2, Sz, Po) be type 3
languages with Ly = L(Gjy), Lo = L(G2).
Assume N; N N2 = ().
Grammar G = (Ny U No, T{ U T, Sq, P) where P contains:
@ the rules of the form A — uB from P; (where B € N;)
@ rules of the form A — uS; for every rule of the form A — u from P;
(with u € T7)
@ all the rules from P>

is of type 3 and generates the language L4 Ls.
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Closure Properties for Regular Languages

Example

L={uc",ue{ab},n>2}

L=Ly-Lp,where: Ly ={a,b}", Lo ={c",n>2}

G1: G2: G =
Q S — aS; Q@ s s, ({S1.8}.{ab.c}, S, P),

Q S — bS Q@ S —cc P
981%a 081—>a81

QS b Q S — bS;
Q@ S — asS
Q S — bS
Q@ S — ¢S
Q@ S —cc
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Closure Properties for Regular Languages

Closure under iteration

Let L be a regular language

Let G= (N, T, S, P) of type 3, which generates L (L = L(G)).
Assume S does not appear in the right side of any rule
Grammar G' = (N, T, S, P") where P’ contains

@ the rules A — uB from P (where B € N)

@ rules A — uS, for any rule A — u from P (where u € T*), different

fromS — €
@ therule S — ¢

is of type 3 and generates L*
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Example

L={am"b™amp™ . .. a%b™ n; mi>1Vie {1,k}, k >0}
L={a"b",n>1,m>1}*

G: G :

Q@ S—x Q@ S—x

Q x— ax Q x— ax

Q x—ay Q x—ay

Q y— by Q y— by

Q@y—b Q@ y-bS
Q S—«¢
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Closure Properties for Regular Languages

Closure under intersection

Let Ly, Lo be regular languages.

Let Gi = (N4, T1, 51, P1) and Go = (N2, T, Sz, P2) type 3 grammars,
in normal form, such that Ly = L(G;y), Lo = L(G2).

Grammar G = (Ny x N>, Ty N T2, (S, S2), P), with P:

() (S1,Sg)—>€,ifS1 —>€€P1 @.ndSZ—)EEPQ
(*] (A1,B1) — a(Ag,Bg), if Ay — aA. € P; gnd By - aB, € Py
® (A1,A) —aifAy wacPrand Ay — ac P

is a type 3 grammar and generates L1 N Lo
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Closure Properties for Regular Languages

Example
L(G1) = {w € {0,1}", w contains at least a symbol 0},
L(G2) = {w € {0,1}*, w ends with "1’}
L(G) = {w € {0,1}", w contains at least a symbol ‘0’ and ends with 1’}
G1: G2: G
Q S~ 1S Q S - 0S5 Q (S1,82) —»1(S54,Sy)
Q@ S —0A Q S —~15 Q (AS)—~1AS)
Q@ S -0 Q S —1 Q (S1,5:) = 0(A Sz)
Q (
Q (

Q A= 1A A S) = 0(A, S,)
Q@ A-0A A, Sz) =1

Q A1

Q@ A0
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Closure Properties for Regular Languages

Example

L(G1) = {w € {0,1}", w contains at least a symbol 0},
L(G2) = {w € {0,1}", w ends with "1’}

L(G) = {w € {0,1}", w contains at least a symbol ‘0’ and ends with 1’}

G1:

Q S~ 15
Q@ S; - 0A
Q@ S -0
QO A 1A
Q@ A—-0A
QO A1
Q@ A-0

LFAC (2024-25)

G2:

Q S~ 0S5
Q S —~15
Q S — 1

G

Lecture 1

Q@ S—-1S
Q X—-1X
Q@ S—0X
Q@ X—0xX
Q X1
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