Formal Languages, Automata and Compilers

Lecture 1

2024-25

Formal Languages, Automata and Compilers Lecture 1

- Course Presentation
- Pormal languages
- Grammars
- 4 Chomsky Hierarchy
- Type 3 Grammars and Languages
- 6 Closure Properties for Regular Languages

Formal Languages, Automata and Compilers

• O. Captarencu: oana.captarencu@info.uaic.ro

```
https://edu.info.uaic.ro/
limbaje-formale-automate-si-compilatoare/
```

A. Moruz:alex.moruz@info.uaic.ro

Evaluation

- 7 seminars, 6 laboratories;
- AS =seminar activity (max 10 points);
- AL = laboratory activtiy (max 10 points);
- T = written test during the examination session (a grade from 1 la 10) Final score:

$$P = 2.5 * AS + 2.5 * AL + 5 * T$$

- Minimal conditions for passing the exam: $(AS + AL) \ge 10$, AS ≥ 4 , AL ≥ 4 , $T \ge 5$, $P \ge 50$;
- The final grade will be established according to the Gauss distribution

Evaluation

- SA = seminar activity (max 10 points):
 - the activity during the seminars problem solving (max 2 points) + bonuses
 - written test (max 8 points)
- LA = laboratory activity:
 - project

Course Content (Part 1): Formal Languages and Automata

Course Content (Part 1): Formal Languages and Automata

Course Content (Part 1): Formal Languages and Automata

- Languages and grammars
- Regular languages; regular grammars, automata, regular expressions
- Context-free languages; context-free grammars, pushdown automata

Formal languages and automata: applications

grammars

- compilers : the syntax of programming languages
- describe specific input for applications
- describe the structure of XML documents (DTD)
- Artificial Intelligence: in NLP (natural language processing)

automata

- compilers: lexical analysis
- text processors: identification of specific patterns
- modelling and verification of software and hardware systems
- modelling network communication protocols
- modelling of computer network protocols
- Al: robotics

regular expressions

- describe and validate input in various applications
- identification of patterns in text
- tools in operating systems (grep, sed, awk)

Course Content (part II)

- Programming languages: design and implementation
- Lexical analysis
- Syntactic analysis
- Translation to intermediary code

Bibliography (selections)

- A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman: Compilers:
 Principles, Techniques, and Tools. Boston: Addison-Wesley, 2007
- Qh. Grigoras. Constructia compilatoarelor Algoritmi fundamentali, Ed. Universitatii Al. I. "Cuza Iasi", ISBN 973-703-084-2, 274 pg., 2005
- Mopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2006). Introduction to Automata Theory, Languages, and Computation (3rd ed.). Addison-Wesley
- J. Toader Limbaje formale şi automate, Editura Matrix Rom, Bucuresti, 1999.
- J. Toader, S. Andrei Limbaje formale şi teoria automatelor. Teorie şi practică, Editura Universitatii "Al. I. Cuza", Iasi, 2002.

Formal Languages, Automata and Compilers Lecture 1

- Course Presentation
- Formal languages
- Grammars
- 4 Chomsky Hierarchy
- Type 3 Grammars and Languages
- 6 Closure Properties for Regular Languages

• Alphabet: (V) a finite set of symbols

- Alphabet: (V) a finite set of symbols
- Word: a finite range/succession of symbols
 - the empty word is denoted by ϵ (or λ).

- Alphabet: (V) a finite set of symbols
- Word: a finite range/succession of symbols
 - the empty word is denoted by ϵ (or λ).
- ullet The length of word u: the number of symbols. Notation: |u|. $|\epsilon|=0$

- Alphabet: (V) a finite set of symbols
- Word: a finite range/succession of symbols
 - the empty word is denoted by ϵ (or λ).
- ullet The length of word u: the number of symbols. Notation: |u|. $|\epsilon|=0$
- V^* the set of all the words over alphabet V, including ϵ .

```
\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,001,\ldots\}
```

- Alphabet: (V) a finite set of symbols
- Word: a finite range/succession of symbols
 - the empty word is denoted by ϵ (or λ).
- ullet The length of word u: the number of symbols. Notation: |u|. $|\epsilon|=0$
- ullet V* the set of all the words over alphabet V, including $\epsilon.$

```
\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,001,\ldots\}
```

ullet V $^+$ - the set of all the non-empty words over alphabet V

$$\{0,1\}^+ = \{0,1,00,01,10,11,000,001,\ldots\}$$

Operations with words

Concatenation of two words x, y: x · y

$$x = 0100, y = 100, x \cdot y = 0100100$$

$$x = 000, y = \epsilon, x \cdot y = 000$$

Operations with words

Concatenation of two words x, y: x · y

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

• Concatenation is an associative operation

Operations with words

Concatenation of two words x, y: x · y

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

- Concatenation is an associative operation
- (V^*, \cdot) is a monoid (ϵ is the identity element), the free monoid generated by V.

Languages

- Let V be an alphabet. A subset $L \subseteq V^*$ is a formal language over alphabet V if L has a finite (mathematical) description.
- A description can be:

Languages

- Let V be an alphabet. A subset $L \subseteq V^*$ is a formal language over alphabet V if L has a finite (mathematical) description.
- A description can be:
 - informal:
 - the set of words over alphabet {0, 1} which contain an even number of 0.
 - $L = \{x \in V^+ : |x| \text{ is even}\}.$
 - $\{a^nb^n|n\in N\}.$

Languages

- Let V be an alphabet. A subset L ⊆ V* is a formal language over alphabet V if L has a finite (mathematical) description.
- A description can be:
 - informal:
 - the set of words over alphabet {0, 1} which contain an even number of 0.
 - $L = \{x \in V^+ : |x| \text{ is even}\}.$
 - $\{a^nb^n|n\in N\}.$
 - formal (mathematical):
 - an inductive description
 - a generative description (using grammars)
 - a description using recognizers (finite automata, pushdown automata, etc.)
 - an algebraic description (regular expressions)

Language Operations

- Set operations (union, intersection)
- Product of languages: $L_1 \cdot L_2 = \{u \cdot v | u \in L_1, v \in L_2\}$

Example:

$$L_1 = \{a^n, n \ge 1\}, L_2 = \{b^n, n \ge 1\}$$

 $L_1 \cdot L_2 = \{a^n b^m, n > 1, m > 1\}$

- Iteration (Kleene product): $L^* = \bigcup_{n>0} L^n$, where:
 - $L^0 = \{\epsilon\}$
 - $L^{n+1} = L^n \cdot L$

$$L = \{a\}, L^0 = \{\epsilon\}, L^1 = L, L^2 = \{aa\}, \dots, L^n = \{a^n\}$$

 $L^* = \{a^n, n > 0\}$

Formal Languages, Automata and Compilers Lecture 1

- Course Presentation
- Formal languages
- Grammars
- 4 Chomsky Hierarchy
- Type 3 Grammars and Languages
- 6 Closure Properties for Regular Languages

Grammars

Definition 1

A grammar is a system G = (N, T, S, P), where:

- N and T are disjoint alphabets:
 - N is the set of non-terminals
 - T is the set of terminals
- ullet $S \in N$ is the start symbol (initial non-terminal)
- P is a finite set of rules (productions): $x \to y$, where $x, y \in (N \cup T)^*$ and x contains at least a non-terminal.

Derivation

Definition 2

Let G = (N, T, S, P) be a grammar $u, v \in (N \cup T)^*$.

v is directly derived (in one step) from u by application of rule $x \to y$,

(written as $u \Rightarrow v$), if $\exists p, q \in (N \cup T)^*$ such that u = pxq and v = pyq.

Derivation

Definition 2

Let G = (N, T, S, P) be a grammar $u, v \in (N \cup T)^*$. v is directly derived (in one step) from u by application of rule $x \to y$, (written as $u \Rightarrow v$), if $\exists p, q \in (N \cup T)^*$ such that u = pxq and v = pyq.

• If $u_1 \Rightarrow u_2 \dots \Rightarrow u_n, n > 1$, we say that u_n is derived from u_1 in grammar G and write: $u_1 \Rightarrow^+ u_n$.

Derivation

Definition 2

Let G = (N, T, S, P) be a grammar $u, v \in (N \cup T)^*$. v is directly derived (in one step) from u by application of rule $x \to y$, (written as $u \Rightarrow v$), if $\exists p, q \in (N \cup T)^*$ such that u = pxq and v = pyq.

- If $u_1 \Rightarrow u_2 \dots \Rightarrow u_n, n > 1$, we say that u_n is derived from u_1 in grammar G and write: $u_1 \Rightarrow^+ u_n$.
- We write $u \Rightarrow^* v$ if $u \Rightarrow^+ v$ or u = v.

Generated Language

Definition 3

The language generated by grammar G is:

$$L(G) = \{ w \in T^* | S \Rightarrow^+ w \}$$

Generated Language

Definition 3

The language generated by grammar G is:

$$L(G) = \{ w \in T^* | S \Rightarrow^+ w \}$$

Definition 4

Two grammars G_1 and G_2 are equivalent if $L(G_1) = L(G_2)$.

- $G = (N, T, S, P), N = \{S, S_1, X\}, T = \{a, b, c\}, P \text{ consists of: }$
 - \bigcirc $S \rightarrow abc$
 - $2 S \rightarrow aS_1Xc$

 - $bX \rightarrow bb$
- $L(G) = \{abc, a^2b^2c^2\}$
- What is the equivalent grammar with only one non-terminal?

- $L = \{a^n b^n | n \ge 1\}$
- Inductive definition:
 - ab ∈ L
 - if $X \in L$, then $aXb \in L$
 - No other word belongs to L

- $L = \{a^n b^n | n \ge 1\}$
- Inductive definition:
 - ab ∈ L
 - if $X \in L$, then $aXb \in L$
 - No other word belongs to L
- Generative definition:
 - $G = (\{X\}, \{a, b\}, X, P)$, where $P = \{X \to aXb, X \to ab\}$
 - Derivation of the word a^3b^3 from the start symbol:

$$X \Rightarrow aXb \Rightarrow a(aXb)b \Rightarrow aa(ab)bb$$

- $L = \{a^n b^n c^n | n \ge 1\}$
- $\bullet = (N, T, S, P), N = \{S, X\}, T = \{a, b, c\}, P \text{ contains the rules:}$

 - 2 $S \rightarrow aSXc$
- Derivation of word $a^3b^3c^3$:
 - $S \Rightarrow^{(2)} a\underline{S}Xc \Rightarrow^{(2)} aa\underline{S}XcXc \Rightarrow^{(1)} aaab\underline{c}XcXc \Rightarrow^{(3)} aaa\underline{b}XccXc \Rightarrow^{(4)} aaabbc\underline{c}Xc \Rightarrow^{(3)} aaabb\underline{c}Xcc \Rightarrow^{(3)} aaabb\underline{c}Xcc \Rightarrow^{(4)} aaabbbccc = a^3b^3c^3$

Formal Languages, Automata and Compilers Lecture 1

- Course Presentation
- Pormal languages
- Grammars
- Chomsky Hierarchy
- Type 3 Grammars and Languages
- 6 Closure Properties for Regular Languages

Type 0 grammars (unrestricted grammars)

There are no restrictions on the rules;

- Type 0 grammars (unrestricted grammars)
 There are no restrictions on the rules:
- **2 Type 1 grammars (context-sensitive grammars)** rules of the form $pxq \to pyq$ where $x \in N$, $y \neq \epsilon$, $p, q \in (N \cup T)^*$, $S \to \epsilon$ (if this rule exists, S must not appear on the right side of the rules)

- Type 0 grammars (unrestricted grammars)
 There are no restrictions on the rules;
- **2 Type 1 grammars (context-sensitive grammars)** rules of the form $pxq \to pyq$ where $x \in N$, $y \neq \epsilon$, $p,q \in (N \cup T)^*$, $S \to \epsilon$ (if this rule exists, S must not appear on the right side of the rules)
- **3** Type 2 grammars (context-free grammars) rules of the form $A \rightarrow y$ where $A \in N$ and $y \in (N \cup T)^*$;

- Type 0 grammars (unrestricted grammars)
 There are no restrictions on the rules:
- **Type 1 grammars (context-sensitive grammars)** rules of the form $pxq \to pyq$ where $x \in N$, $y \neq \epsilon$, $p, q \in (N \cup T)^*$, $S \to \epsilon$ (if this rule exists, S must not appear on the right side of the rules)
- **3** Type 2 grammars (context-free grammars) rules of the form $A \rightarrow y$ where $A \in N$ and $y \in (N \cup T)^*$;
- **1 Type 3 grammars (regular)** rules of the form $A \rightarrow u$ or $A \rightarrow uB$ where $A, B \in N$ and $u \in T^*$.

Type 1: $pxq \rightarrow pyq$ where $x \in N$, $y \neq \epsilon$, $p,q \in (N \cup T)^*$, $S \rightarrow \epsilon$

- $G = (N, T, S, P), N = \{S, A, B\}, T = \{a, b, c\}, P$:
 - $(1)S \rightarrow aaAc$
 - (2) $aAc \rightarrow aAbBc$
 - $(3)bB \rightarrow bBc$
 - $(4)Bc \rightarrow Abc$
 - $(5)A \rightarrow a$

Type 1 grammar

- $G = (N, T, S, P), N = \{S, X\}, T = \{a, b, c\}, P$:
 - $(1)S \rightarrow abc$
 - (2) $S \rightarrow aSXc$
 - $(3)cX \rightarrow Xc$ (it is not a type 1 rule!, the grammar is a type 0 grammar)
 - $(4)bX \rightarrow bb$

Type 2: $A \rightarrow y$ where $A \in N$ and $y \in (N \cup T)^*$

Type 3: $A \rightarrow u$ or $A \rightarrow uB$ where $A, B \in N$ and $u \in T^*$.

- G:
 - $(1)x \rightarrow ax$
 - $(1)x \rightarrow xb$
 - $(2)x \rightarrow \epsilon$

Type 2: $A \rightarrow y$ where $A \in N$ and $y \in (N \cup T)^*$

Type 3: $A \rightarrow u$ or $A \rightarrow uB$ where $A, B \in N$ and $u \in T^*$.

- G:
 - $(1)x \rightarrow ax$
 - $(1)x \rightarrow xb$
 - (2) $x \rightarrow \epsilon$
 - (Type 2)
- G:
 - $(1)x \rightarrow ax$
 - $(2)x \rightarrow bx$
 - (3) $x \rightarrow \epsilon$

Type 2: $A \rightarrow y$ where $A \in N$ and $y \in (N \cup T)^*$

Type 3: $A \rightarrow u$ or $A \rightarrow uB$ where $A, B \in N$ and $u \in T^*$.

- G:
 - $(1)x \rightarrow ax$
 - $(1)x \rightarrow xb$
 - (2) $x \rightarrow \epsilon$
 - (Type 2)
- G:
 - $(1)x \rightarrow ax$
 - $(2)x \rightarrow bx$
 - (3) $x \rightarrow \epsilon$
 - (Type 3)

Classification of languages

- A language L is of type j if there exists a grammar G of type j such that L(G) = L, where $j \in \{0, 1, 2, 3\}$.
- \mathcal{L}_j denotes the set of all languages of type j, where $j \in \{0, 1, 2, 3\}$.
- It holds that: $\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$
- The inclusions are strict:
 - any language of type j + 1 is also of type $j \in \{0, 1, 2\}$
 - there exists languages of type j that are not of type j+1, $j \in \{0,1,2\}$

Formal Languages, Automata and Compilers Lecture 1

- Course Presentation
- Pormal languages
- Grammars
- Chomsky Hierarchy
- Type 3 Grammars and Languages
- 6 Closure Properties for Regular Languages

- A grammar G = (N, T, S, P) is a type 3 grammar if all the rules are of the form: $A \rightarrow u$ or $A \rightarrow uB$ where $A, B \in N$ and $u \in T^*$.
- Type 3 grammars are also called regular grammars;
- Example: Let

$$G = (\{A, B\}, \{a, b\}, A, \{A \rightarrow aA, A \rightarrow B, B \rightarrow bB, B \rightarrow \epsilon\})$$

- A grammar G = (N, T, S, P) is a type 3 grammar if all the rules are of the form: $A \rightarrow u$ or $A \rightarrow uB$ where $A, B \in N$ and $u \in T^*$.
- Type 3 grammars are also called regular grammars;
- Example: Let

$$G = (\{A, B\}, \{a, b\}, A, \{A \rightarrow aA, A \rightarrow B, B \rightarrow bB, B \rightarrow \epsilon\})$$

$$L(G) = \{a^n b^m, n, m \ge 0\}$$

• $G = (\{D\}, \{0, 1, ..., 9\}, D, P)$

where P is:

$$D \rightarrow 0D|1D|2D|\dots|9D$$

$$D \rightarrow 0|1|\dots|9$$

• $G = (\{A, B\}, \{I, d\}, A, P)$ where P is:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ ($I = latter, d = figure$)

• $G = (\{D\}, \{0, 1, ..., 9\}, D, P)$

where P is:

$$D \rightarrow 0D|1D|2D|\dots|9D$$

$$D \rightarrow 0|1|\dots|9$$

• $G = (\{A, B\}, \{I, d\}, A, P)$ where P is:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ ($I = latter, d = figure$)

L(G): the set of identifiers

The Normal Form for Regular Grammars

 A regular grammar G is in normal form if all the rules are of the form A → a or A → aB, where a ∈ T, and, if necessary S → ε (in this case S does not appear in the right side of the rules).

 For any type 3 grammar there exists an equivalent grammar in normal form.

The Normal Form for Regular Grammars

- The equivalent grammar in normal form can be obtained as follows:
 - Remove (replace) the rules of the form $A \to B$ (unit rules) and $A \to \epsilon$ (ϵ -rules), except, if necessary, $S \to \epsilon$.
 - Any rule $A \to a_1 a_2 \dots a_n$ is replaced by: $A \to a_1 B_1, B_1 \to a_2 B_2, \dots, B_{n-2} \to a_{n-1} B_{n-1}, B_{n-1} \to a_n, n > 1, B_1, \dots, B_{n-1}$ are new non-terminals.
 - Any rule $A \rightarrow a_1 a_2 \dots a_n B$ is replaced by: $A \rightarrow a_1 B_1$, $B_1 \rightarrow a_2 B_2, \dots, B_{n-2} \rightarrow a_{n-1} B_{n-1}, B_{n-1} \rightarrow a_n B, n > 1, B_1, \dots, B_{n-1}$ are new non-terminals
 - The new grammar generates the same language

Formal Languages, Automata and Compilers Lecture 1

- Course Presentation
- Formal languages
- Grammars
- 4 Chomsky Hierarchy
- Type 3 Grammars and Languages
- 6 Closure Properties for Regular Languages

Let L, L_1, L_2 be regular languages.

Then, the following languages are also regular languages:

- \bullet $L_1 \cup L_2$
- \bullet $L_1 \cdot L_2$
- L*
- $L_1 \cap L_2$
- $L_1 \setminus L_2$

Closure under union

Let L, L_1, L_2 be regular languages.

Let
$$G_1 = (N_1, T_1, S_1, P_1)$$
 and $G_2 = (N_2, T_2, S_2, P_2)$ be type 3

grammars
$$L_1 = L(G_1), L_2 = L(G_2).$$

Assume $N_1 \cap N2 = \emptyset$.

Closure under union: it can be proved that $L_1 \cup L_2 \in \mathcal{L}_3$:

Grammar
$$G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\})$$

is of type 3 and generates $L_1 \cup L_2$

Closure under product

Let L_1 , L_2 be regular languages.

Let
$$G_1 = (N_1, T_1, S_1, P_1)$$
 and $G_2 = (N_2, T_2, S_2, P_2)$ be type 3

languages with $L_1 = L(G_1)$, $L_2 = L(G_2)$.

Assume $N_1 \cap N_2 = \emptyset$.

Grammar $G = (N_1 \cup N_2, T_1 \cup T_2, S_1, P)$ where P contains:

- the rules of the form $A \rightarrow uB$ from P_1 (where $B \in N_1$)
- rules of the form $A \to uS_2$ for every rule of the form $A \to u$ from P_1 (with $u \in \mathcal{T}_1^*$)
- all the rules from P₂

is of type 3 and generates the language L_1L_2 .

$$L = \{uc^n, u \in \{a, b\}^+, n \ge 2\}$$

$$L = L_1 \cdot L_2$$
, where: $L_1 = \{a, b\}^+, L_2 = \{c^n, n \ge 2\}$

G1:

G2 :

C

$$(\{S_1, S_2\}, \{a, b, c\}, S_1, P),$$

P:

Closure under iteration

Let *L* be a regular language

Let G = (N, T, S, P) of type 3, which generates L(L = L(G)).

Assume S does not appear in the right side of any rule

Grammar G' = (N, T, S, P') where P' contains

- the rules $A \rightarrow uB$ from P (where $B \in N$)
- rules $A \to uS$, for any rule $A \to u$ from P (where $u \in T^*$), different from $S \to \epsilon$
- the rule $S \rightarrow \epsilon$

is of type 3 and generates L^*

$$\begin{split} L &= \{a^{n_1}b^{m_1}a^{n_2}b^{m_2}\dots a^{n_k}b^{m_k}, n_i, m_i \geq 1 \forall i \in \{1, k\}, k \geq 0\} \\ L &= \{a^nb^m, n \geq 1, m \geq 1\}^* \end{split}$$

G:

G':

- - \bullet $x \rightarrow ay$

 $\Psi V \rightarrow bV$

- $v \rightarrow bS$
- \bullet $S \rightarrow \epsilon$

Closure under intersection

Let L_1 , L_2 be regular languages.

Let $G_1 = (N_1, T_1, S_1, P_1)$ and $G_2 = (N_2, T_2, S_2, P_2)$ type 3 grammars,

in normal form, such that $L_1 = L(G_1)$, $L_2 = L(G_2)$.

Grammar $G = (N_1 \times N_2, T_1 \cap T_2, (S_1, S_2), P)$, with P:

- ullet $(S_1,S_2)
 ightarrow \epsilon$, if $S_1
 ightarrow \epsilon \in P_1$ and $S_2
 ightarrow \epsilon \in P_2$
- $(A_1,B_1) \rightarrow a(A_2,B_2)$, if $A_1 \rightarrow aA_2 \in P_1$ and $B_1 \rightarrow aB_2 \in P_2$
- $(A_1,A_2) \rightarrow a$, if $A_1 \rightarrow a \in P_1$ and $A_2 \rightarrow a \in P_2$

is a type 3 grammar and generates $L_1 \cap L_2$

 $L(G1) = \{w \in \{0, 1\}^*, \text{ w contains at least a symbol '0'}\},$

$$L(G2) = \{ w \in \{0, 1\}^*, \text{ w ends with '1'} \}$$

 $L(G) = \{w \in \{0, 1\}^*, \text{ w contains at least a symbol '0' and ends with '1'}\}$

G1:

G2 :

G

2
$$S_2 \to 1S_2$$

$$(A, S_2) \to 1(A, S_2)$$

$$3 S_1 \rightarrow 0$$

3
$$S_2 \to 1$$

⑤
$$(A, S_2)$$
 → 1

$$A \rightarrow 0$$

```
L(G1) = \{ w \in \{0,1\}^*, \text{ w contains at least a symbol '0'} \},
```

$$L(G2) = \{ w \in \{0, 1\}^*, \text{ w ends with '1'} \}$$

$$L(G) = \{w \in \{0, 1\}^*, \text{ w contains at least a symbol '0' and ends with '1'}\}$$

G1:

$$0 S_1 \to 1S_1$$

②
$$S_1 \to 0A$$
 ② $S_2 \to 1S_2$ ② $X \to 1X$

3
$$S_2 \to 1$$

$$A \rightarrow 0$$