
Formal Languages, Automata and Compilers

Lecture 1

2024-25

LFAC (2024-25) Lecture 1 1 / 42

Course Presentation

Formal Languages, Automata and Compilers

Lecture 1

1 Course Presentation

2 Formal languages

3 Grammars

4 Chomsky Hierarchy

5 Type 3 Grammars and Languages

6 Closure Properties for Regular Languages

LFAC (2024-25) Lecture 1 2 / 42

Course Presentation

Formal Languages, Automata and Compilers

O. Captarencu: oana.captarencu@info.uaic.ro

https://edu.info.uaic.ro/

limbaje-formale-automate-si-compilatoare/

A. Moruz:alex.moruz@info.uaic.ro

LFAC (2024-25) Lecture 1 3 / 42

https://edu.info.uaic.ro/limbaje-formale-automate-si-compilatoare/
https://edu.info.uaic.ro/limbaje-formale-automate-si-compilatoare/

Course Presentation

Evaluation

7 seminars, 6 laboratories;

AS =seminar activity (max 10 points);

AL = laboratory activtiy (max 10 points);

T = written test during the examination session (a grade from 1 la

10) Final score:

P = 2.5 * AS + 2.5 * AL + 5 * T

Minimal conditions for passing the exam: (AS + AL) ≥ 10, AS ≥
4, AL ≥ 4, T ≥ 5, P ≥ 50;

The final grade will be established according to the Gauss

distribution

LFAC (2024-25) Lecture 1 4 / 42

Course Presentation

Evaluation

SA = seminar activity (max 10 points):

the activity during the seminars - problem solving (max 2 points) +

bonuses

written test (max 8 points)

LA = laboratory activity:

project

LFAC (2024-25) Lecture 1 5 / 42

Course Presentation

Course Content (Part 1): Formal Languages and

Automata

LFAC (2024-25) Lecture 1 6 / 42

Course Presentation

Course Content (Part 1): Formal Languages and

Automata

LFAC (2024-25) Lecture 1 7 / 42

Course Presentation

Course Content (Part 1): Formal Languages and

Automata

Languages and grammars

Regular languages; regular grammars, automata , regular

expressions

Context-free languages; context-free grammars, pushdown

automata

LFAC (2024-25) Lecture 1 8 / 42

Course Presentation

Formal languages and automata: applications
grammars

compilers : the syntax of programming languages
describe specific input for applications
describe the structure of XML documents (DTD)

Artificial Intelligence: in NLP (natural language processing)

automata
compilers: lexical analysis
text processors: identification of specific patterns
modelling and verification of software and hardware systems
modelling network communication protocols
modelling of computer network protocols

AI: robotics

regular expressions
describe and validate input in various applications
identification of patterns in text

tools in operating systems (grep, sed, awk)
LFAC (2024-25) Lecture 1 9 / 42

Course Presentation

Course Content (part II)

Programming languages: design and implementation

Lexical analysis

Syntactic analysis

Translation to intermediary code

LFAC (2024-25) Lecture 1 10 / 42

Course Presentation

Bibliography (selections)
1 A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman: Compilers:

Principles, Techniques, and Tools. Boston: Addison-Wesley, 2007
2 Gh. Grigoras. Constructia compilatoarelor - Algoritmi

fundamentali, Ed. Universitatii Al. I. ”Cuza Iasi”, ISBN

973-703-084-2, 274 pg., 2005
3 Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2006).

Introduction to Automata Theory, Languages, and Computation

(3rd ed.). Addison-Wesley
4 J. Toader - Limbaje formale şi automate, Editura Matrix Rom,

Bucuresti, 1999.
5 J. Toader, S. Andrei - Limbaje formale şi teoria automatelor. Teorie

şi practică, Editura Universitatii ”Al. I. Cuza”, Iasi, 2002.
LFAC (2024-25) Lecture 1 11 / 42

Formal languages

Formal Languages, Automata and Compilers

Lecture 1

1 Course Presentation

2 Formal languages

3 Grammars

4 Chomsky Hierarchy

5 Type 3 Grammars and Languages

6 Closure Properties for Regular Languages

LFAC (2024-25) Lecture 1 12 / 42

Formal languages

Basic notions

Alphabet: (V) a finite set of symbols

Word: a finite range/succession of symbols

the empty word is denoted by ϵ (or λ).

The length of word u: the number of symbols. Notation: |u|. |ϵ| = 0

V ∗ - the set of all the words over alphabet V, including ϵ.

{0,1}∗ = {ϵ,0,1,00,01,10,11,000,001, . . .}

V+ - the set of all the non-empty words over alphabet V

{0,1}+ = {0,1,00,01,10,11,000,001, . . .}

LFAC (2024-25) Lecture 1 13 / 42

Formal languages

Basic notions

Alphabet: (V) a finite set of symbols

Word: a finite range/succession of symbols

the empty word is denoted by ϵ (or λ).

The length of word u: the number of symbols. Notation: |u|. |ϵ| = 0

V ∗ - the set of all the words over alphabet V, including ϵ.

{0,1}∗ = {ϵ,0,1,00,01,10,11,000,001, . . .}

V+ - the set of all the non-empty words over alphabet V

{0,1}+ = {0,1,00,01,10,11,000,001, . . .}

LFAC (2024-25) Lecture 1 13 / 42

Formal languages

Basic notions

Alphabet: (V) a finite set of symbols

Word: a finite range/succession of symbols

the empty word is denoted by ϵ (or λ).

The length of word u: the number of symbols. Notation: |u|. |ϵ| = 0

V ∗ - the set of all the words over alphabet V, including ϵ.

{0,1}∗ = {ϵ,0,1,00,01,10,11,000,001, . . .}

V+ - the set of all the non-empty words over alphabet V

{0,1}+ = {0,1,00,01,10,11,000,001, . . .}

LFAC (2024-25) Lecture 1 13 / 42

Formal languages

Basic notions

Alphabet: (V) a finite set of symbols

Word: a finite range/succession of symbols

the empty word is denoted by ϵ (or λ).

The length of word u: the number of symbols. Notation: |u|. |ϵ| = 0

V ∗ - the set of all the words over alphabet V, including ϵ.

{0,1}∗ = {ϵ,0,1,00,01,10,11,000,001, . . .}

V+ - the set of all the non-empty words over alphabet V

{0,1}+ = {0,1,00,01,10,11,000,001, . . .}

LFAC (2024-25) Lecture 1 13 / 42

Formal languages

Basic notions

Alphabet: (V) a finite set of symbols

Word: a finite range/succession of symbols

the empty word is denoted by ϵ (or λ).

The length of word u: the number of symbols. Notation: |u|. |ϵ| = 0

V ∗ - the set of all the words over alphabet V, including ϵ.

{0,1}∗ = {ϵ,0,1,00,01,10,11,000,001, . . .}

V+ - the set of all the non-empty words over alphabet V

{0,1}+ = {0,1,00,01,10,11,000,001, . . .}

LFAC (2024-25) Lecture 1 13 / 42

Formal languages

Operations with words

Concatenation of two words x, y: x · y

x = 0100, y = 100, x · y = 0100100

x = 000, y = ϵ, x · y = 000

Concatenation is an associative operation

(V ∗, ·) is a monoid (ϵ is the identity element), the free monoid

generated by V .

LFAC (2024-25) Lecture 1 14 / 42

Formal languages

Operations with words

Concatenation of two words x, y: x · y

x = 0100, y = 100, x · y = 0100100

x = 000, y = ϵ, x · y = 000

Concatenation is an associative operation

(V ∗, ·) is a monoid (ϵ is the identity element), the free monoid

generated by V .

LFAC (2024-25) Lecture 1 14 / 42

Formal languages

Operations with words

Concatenation of two words x, y: x · y

x = 0100, y = 100, x · y = 0100100

x = 000, y = ϵ, x · y = 000

Concatenation is an associative operation

(V ∗, ·) is a monoid (ϵ is the identity element), the free monoid

generated by V .

LFAC (2024-25) Lecture 1 14 / 42

Formal languages

Languages
Let V be an alphabet. A subset L ⊆ V ∗ is a formal language over

alphabet V if L has a finite (mathematical) description.

A description can be:

informal:
the set of words over alphabet {0, 1} which contain an even number

of 0.

L = {x ∈ V+ : |x | is even}.

{anbn|n ∈ N}.

formal (mathematical):
an inductive description

a generative description (using grammars)

a description using recognizers (finite automata, pushdown automata,

etc.)

an algebraic description (regular expressions)

LFAC (2024-25) Lecture 1 15 / 42

Formal languages

Languages
Let V be an alphabet. A subset L ⊆ V ∗ is a formal language over

alphabet V if L has a finite (mathematical) description.

A description can be:
informal:

the set of words over alphabet {0, 1} which contain an even number

of 0.

L = {x ∈ V+ : |x | is even}.

{anbn|n ∈ N}.

formal (mathematical):
an inductive description

a generative description (using grammars)

a description using recognizers (finite automata, pushdown automata,

etc.)

an algebraic description (regular expressions)

LFAC (2024-25) Lecture 1 15 / 42

Formal languages

Languages
Let V be an alphabet. A subset L ⊆ V ∗ is a formal language over

alphabet V if L has a finite (mathematical) description.

A description can be:
informal:

the set of words over alphabet {0, 1} which contain an even number

of 0.

L = {x ∈ V+ : |x | is even}.

{anbn|n ∈ N}.

formal (mathematical):
an inductive description

a generative description (using grammars)

a description using recognizers (finite automata, pushdown automata,

etc.)

an algebraic description (regular expressions)

LFAC (2024-25) Lecture 1 15 / 42

Formal languages

Language Operations

Set operations (union, intersection)

Product of languages: L1 · L2 = {u · v |u ∈ L1, v ∈ L2}

Example:

L1 = {an,n ≥ 1}, L2 = {bn,n ≥ 1}

L1 · L2 = {anbm,n ≥ 1,m ≥ 1}

Iteration (Kleene product): L∗ =
⋃

n≥0 Ln, where:
L0 = {ϵ}
Ln+1 = Ln · L

Example:

L = {a}, L0 = {ϵ},L1 = L,L2 = {aa}, . . . ,Ln = {an}

L∗ = {an,n ≥ 0}
LFAC (2024-25) Lecture 1 16 / 42

Grammars

Formal Languages, Automata and Compilers

Lecture 1

1 Course Presentation

2 Formal languages

3 Grammars

4 Chomsky Hierarchy

5 Type 3 Grammars and Languages

6 Closure Properties for Regular Languages

LFAC (2024-25) Lecture 1 17 / 42

Grammars

Grammars

Definition 1
A grammar is a system G = (N,T ,S,P), where:

N and T are disjoint alphabets:

N is the set of non-terminals

T is the set of terminals

S ∈ N is the start symbol (initial non-terminal)

P is a finite set of rules (productions): x → y, where

x , y ∈ (N ∪ T)∗ and x contains at least a non-terminal.

LFAC (2024-25) Lecture 1 18 / 42

Grammars

Derivation

Definition 2
Let G = (N,T ,S,P) be a grammar u, v ∈ (N ∪ T)∗.

v is directly derived (in one step) from u by application of rule x → y,

(written as u ⇒ v), if ∃p,q ∈ (N ∪ T)∗ such that u = pxq and v = pyq.

If u1 ⇒ u2 . . . ⇒ un,n > 1, we say that un is derived from u1 in

grammar G and write: u1 ⇒+ un.

We write u ⇒∗ v if u ⇒+ v or u = v .

LFAC (2024-25) Lecture 1 19 / 42

Grammars

Derivation

Definition 2
Let G = (N,T ,S,P) be a grammar u, v ∈ (N ∪ T)∗.

v is directly derived (in one step) from u by application of rule x → y,

(written as u ⇒ v), if ∃p,q ∈ (N ∪ T)∗ such that u = pxq and v = pyq.

If u1 ⇒ u2 . . . ⇒ un,n > 1, we say that un is derived from u1 in

grammar G and write: u1 ⇒+ un.

We write u ⇒∗ v if u ⇒+ v or u = v .

LFAC (2024-25) Lecture 1 19 / 42

Grammars

Derivation

Definition 2
Let G = (N,T ,S,P) be a grammar u, v ∈ (N ∪ T)∗.

v is directly derived (in one step) from u by application of rule x → y,

(written as u ⇒ v), if ∃p,q ∈ (N ∪ T)∗ such that u = pxq and v = pyq.

If u1 ⇒ u2 . . . ⇒ un,n > 1, we say that un is derived from u1 in

grammar G and write: u1 ⇒+ un.

We write u ⇒∗ v if u ⇒+ v or u = v .

LFAC (2024-25) Lecture 1 19 / 42

Grammars

Generated Language

Definition 3
The language generated by grammar G is:

L(G) = {w ∈ T ∗|S ⇒+ w}

Definition 4
Two grammars G1 and G2 are equivalent if L(G1) = L(G2).

LFAC (2024-25) Lecture 1 20 / 42

Grammars

Generated Language

Definition 3
The language generated by grammar G is:

L(G) = {w ∈ T ∗|S ⇒+ w}

Definition 4
Two grammars G1 and G2 are equivalent if L(G1) = L(G2).

LFAC (2024-25) Lecture 1 20 / 42

Grammars

Example

G = (N,T ,S,P), N = {S,S1,X}, T = {a,b, c}, P consists of:
1 S → abc
2 S → aS1Xc
3 S1 → abc
4 cX → Xc
5 bX → bb

L(G) = {abc,a2b2c2}

What is the equivalent grammar with only one non-terminal?

LFAC (2024-25) Lecture 1 21 / 42

Grammars

Example

L = {anbn|n ≥ 1}
Inductive definition:

ab ∈ L

if X ∈ L, then aXb ∈ L

No other word belongs to L

Generative definition:

G = ({X}, {a,b},X ,P), where P = {X → aXb,X → ab}
Derivation of the word a3b3 from the start symbol:

X ⇒ aXb ⇒ a(aXb)b ⇒ aa(ab)bb

LFAC (2024-25) Lecture 1 22 / 42

Grammars

Example

L = {anbn|n ≥ 1}
Inductive definition:

ab ∈ L

if X ∈ L, then aXb ∈ L

No other word belongs to L

Generative definition:

G = ({X}, {a,b},X ,P), where P = {X → aXb,X → ab}
Derivation of the word a3b3 from the start symbol:

X ⇒ aXb ⇒ a(aXb)b ⇒ aa(ab)bb

LFAC (2024-25) Lecture 1 22 / 42

Grammars

Example

L = {anbncn|n ≥ 1}
= (N,T ,S,P), N = {S,X}, T = {a,b, c}, P contains the rules:

1 S → abc
2 S → aSXc
3 cX → Xc
4 bX → bb

Derivation of word a3b3c3:

S ⇒(2) aSXc ⇒(2) aaSXcXc ⇒(1) aaabcXcXc ⇒(3)

aaabXccXc ⇒(4) aaabbccXc ⇒(3) aaabbcXcc ⇒(3)

aaabbXccc ⇒(4) aaabbbccc = a3b3c3

LFAC (2024-25) Lecture 1 23 / 42

Chomsky Hierarchy

Formal Languages, Automata and Compilers

Lecture 1

1 Course Presentation

2 Formal languages

3 Grammars

4 Chomsky Hierarchy

5 Type 3 Grammars and Languages

6 Closure Properties for Regular Languages

LFAC (2024-25) Lecture 1 24 / 42

Chomsky Hierarchy

Chomsky Hierarchy

1 Type 0 grammars (unrestricted grammars)

There are no restrictions on the rules;

2 Type 1 grammars (context-sensitive grammars)

rules of the form pxq → pyq where x ∈ N, y ̸= ϵ, p,q ∈ (N ∪ T)∗,

S → ϵ (if this rule exists, S must not appear on the right side of the

rules)

3 Type 2 grammars (context-free grammars)

rules of the form A → y where A ∈ N and y ∈ (N ∪ T)∗;

4 Type 3 grammars (regular)

rules of the form A → u or A → uB where A,B ∈ N and u ∈ T ∗.

LFAC (2024-25) Lecture 1 25 / 42

Chomsky Hierarchy

Chomsky Hierarchy

1 Type 0 grammars (unrestricted grammars)

There are no restrictions on the rules;

2 Type 1 grammars (context-sensitive grammars)

rules of the form pxq → pyq where x ∈ N, y ̸= ϵ, p,q ∈ (N ∪ T)∗,

S → ϵ (if this rule exists, S must not appear on the right side of the

rules)

3 Type 2 grammars (context-free grammars)

rules of the form A → y where A ∈ N and y ∈ (N ∪ T)∗;

4 Type 3 grammars (regular)

rules of the form A → u or A → uB where A,B ∈ N and u ∈ T ∗.

LFAC (2024-25) Lecture 1 25 / 42

Chomsky Hierarchy

Chomsky Hierarchy

1 Type 0 grammars (unrestricted grammars)

There are no restrictions on the rules;

2 Type 1 grammars (context-sensitive grammars)

rules of the form pxq → pyq where x ∈ N, y ̸= ϵ, p,q ∈ (N ∪ T)∗,

S → ϵ (if this rule exists, S must not appear on the right side of the

rules)

3 Type 2 grammars (context-free grammars)

rules of the form A → y where A ∈ N and y ∈ (N ∪ T)∗;

4 Type 3 grammars (regular)

rules of the form A → u or A → uB where A,B ∈ N and u ∈ T ∗.

LFAC (2024-25) Lecture 1 25 / 42

Chomsky Hierarchy

Chomsky Hierarchy

1 Type 0 grammars (unrestricted grammars)

There are no restrictions on the rules;

2 Type 1 grammars (context-sensitive grammars)

rules of the form pxq → pyq where x ∈ N, y ̸= ϵ, p,q ∈ (N ∪ T)∗,

S → ϵ (if this rule exists, S must not appear on the right side of the

rules)

3 Type 2 grammars (context-free grammars)

rules of the form A → y where A ∈ N and y ∈ (N ∪ T)∗;

4 Type 3 grammars (regular)

rules of the form A → u or A → uB where A,B ∈ N and u ∈ T ∗.

LFAC (2024-25) Lecture 1 25 / 42

Chomsky Hierarchy

Examples
Type 1: pxq → pyq where x ∈ N, y ̸= ϵ, p,q ∈ (N ∪ T)∗, S → ϵ

G = (N,T ,S,P), N = {S,A,B}, T = {a,b, c}, P:

(1)S → aaAc

(2)aAc → aAbBc

(3)bB → bBc

(4)Bc → Abc

(5)A → a

Type 1 grammar

G = (N,T ,S,P), N = {S,X}, T = {a,b, c}, P:

(1)S → abc

(2)S → aSXc

(3)cX → Xc (it is not a type 1 rule!, the grammar is a type 0 grammar)

(4)bX → bb

LFAC (2024-25) Lecture 1 26 / 42

Chomsky Hierarchy

Examples
Type 2: A → y where A ∈ N and y ∈ (N ∪ T)∗

Type 3: A → u or A → uB where A,B ∈ N and u ∈ T ∗.

G:

(1)x → ax

(1)x → xb

(2)x → ϵ

(Type 2)

G:

(1)x → ax

(2)x → bx

(3)x → ϵ

(Type 3)

LFAC (2024-25) Lecture 1 27 / 42

Chomsky Hierarchy

Examples
Type 2: A → y where A ∈ N and y ∈ (N ∪ T)∗

Type 3: A → u or A → uB where A,B ∈ N and u ∈ T ∗.

G:

(1)x → ax

(1)x → xb

(2)x → ϵ

(Type 2)

G:

(1)x → ax

(2)x → bx

(3)x → ϵ

(Type 3)

LFAC (2024-25) Lecture 1 27 / 42

Chomsky Hierarchy

Examples
Type 2: A → y where A ∈ N and y ∈ (N ∪ T)∗

Type 3: A → u or A → uB where A,B ∈ N and u ∈ T ∗.

G:

(1)x → ax

(1)x → xb

(2)x → ϵ

(Type 2)

G:

(1)x → ax

(2)x → bx

(3)x → ϵ

(Type 3)
LFAC (2024-25) Lecture 1 27 / 42

Chomsky Hierarchy

Classification of languages

A language L is of type j if there exists a grammar G of type j such

that L(G) = L, where j ∈ {0,1,2,3}.

Lj denotes the set of all languages of type j, where j ∈ {0,1,2,3}.

It holds that: L3 ⊂ L2 ⊂ L1 ⊂ L0

The inclusions are strict:

any language of type j + 1 is also of type j ∈ {0,1,2}
there exists languages of type j that are not of type j + 1,

j ∈ {0,1,2}

LFAC (2024-25) Lecture 1 28 / 42

Type 3 Grammars and Languages

Formal Languages, Automata and Compilers

Lecture 1

1 Course Presentation

2 Formal languages

3 Grammars

4 Chomsky Hierarchy

5 Type 3 Grammars and Languages

6 Closure Properties for Regular Languages

LFAC (2024-25) Lecture 1 29 / 42

Type 3 Grammars and Languages

A grammar G = (N,T ,S,P) is a type 3 grammar if all the rules

are of the form: A → u or A → uB where A,B ∈ N and u ∈ T ∗.

Type 3 grammars are also called regular grammars;

Example: Let

G = ({A,B}, {a,b},A, {A → aA,A → B,B → bB,B → ϵ})

L(G) = {anbm,n,m ≥ 0}

LFAC (2024-25) Lecture 1 30 / 42

Type 3 Grammars and Languages

A grammar G = (N,T ,S,P) is a type 3 grammar if all the rules

are of the form: A → u or A → uB where A,B ∈ N and u ∈ T ∗.

Type 3 grammars are also called regular grammars;

Example: Let

G = ({A,B}, {a,b},A, {A → aA,A → B,B → bB,B → ϵ})
L(G) = {anbm,n,m ≥ 0}

LFAC (2024-25) Lecture 1 30 / 42

Type 3 Grammars and Languages

Examples

G = ({D}, {0,1, ...,9},D,P)

where P is:

D → 0D|1D|2D| . . . |9D

D → 0|1| . . . |9

G = ({A,B}, {l ,d},A,P) where P is:

A → lB, B → lB|dB|ϵ (l = latter, d = figure)

L(G): the set of identifiers

LFAC (2024-25) Lecture 1 31 / 42

Type 3 Grammars and Languages

Examples

G = ({D}, {0,1, ...,9},D,P)

where P is:

D → 0D|1D|2D| . . . |9D

D → 0|1| . . . |9

G = ({A,B}, {l ,d},A,P) where P is:

A → lB, B → lB|dB|ϵ (l = latter, d = figure)

L(G): the set of identifiers

LFAC (2024-25) Lecture 1 31 / 42

Type 3 Grammars and Languages

The Normal Form for Regular Grammars

A regular grammar G is in normal form if all the rules are of the

form A → a or A → aB, where a ∈ T , and, if necessary S → ϵ (in

this case S does not appear in the right side of the rules).

For any type 3 grammar there exists an equivalent grammar in

normal form.

LFAC (2024-25) Lecture 1 32 / 42

Type 3 Grammars and Languages

The Normal Form for Regular Grammars

The equivalent grammar in normal form can be obtained as
follows:

Remove (replace) the rules of the form A → B (unit rules) and

A → ϵ (ϵ-rules), except, if necessary, S → ϵ.

Any rule A → a1a2 . . . an is replaced by: A → a1B1,B1 → a2B2, . . .,

Bn−2 → an−1Bn−1, Bn−1 → an, n > 1, B1, . . . ,Bn−1 are new

non-terminals.

Any rule A → a1a2 . . . anB is replaced by: A → a1B1,

B1 → a2B2, . . ., Bn−2 → an−1Bn−1, Bn−1 → anB, n > 1, B1, . . . ,Bn−1

are new non-terminals

The new grammar generates the same language

LFAC (2024-25) Lecture 1 33 / 42

Closure Properties for Regular Languages

Formal Languages, Automata and Compilers

Lecture 1

1 Course Presentation

2 Formal languages

3 Grammars

4 Chomsky Hierarchy

5 Type 3 Grammars and Languages

6 Closure Properties for Regular Languages

LFAC (2024-25) Lecture 1 34 / 42

Closure Properties for Regular Languages

Let L,L1,L2 be regular languages.

Then, the following languages are also regular languages:

L1 ∪ L2

L1 · L2

L∗

L1 ∩ L2

L1 \ L2

LFAC (2024-25) Lecture 1 35 / 42

Closure Properties for Regular Languages

Closure under union

Let L,L1,L2 be regular languages.

Let G1 = (N1,T1,S1,P1) and G2 = (N2,T2,S2,P2) be type 3

grammars L1 = L(G1), L2 = L(G2).

Assume N1 ∩ N2 = ∅.

Closure under union: it can be proved that L1 ∪ L2 ∈ L3:

Grammar G = (N1 ∪N2 ∪ {S},T1 ∪ T2,S,P1 ∪P2 ∪ {S → S1,S → S2})
is of type 3 and generates L1 ∪ L2

LFAC (2024-25) Lecture 1 36 / 42

Closure Properties for Regular Languages

Closure under product

Let L1,L2 be regular languages.

Let G1 = (N1,T1,S1,P1) and G2 = (N2,T2,S2,P2) be type 3

languages with L1 = L(G1), L2 = L(G2).

Assume N1 ∩ N2 = ∅.

Grammar G = (N1 ∪ N2,T1 ∪ T2,S1,P) where P contains:

the rules of the form A → uB from P1 (where B ∈ N1)

rules of the form A → uS2 for every rule of the form A → u from P1

(with u ∈ T ∗
1)

all the rules from P2

is of type 3 and generates the language L1L2.

LFAC (2024-25) Lecture 1 37 / 42

Closure Properties for Regular Languages

Example
L = {ucn,u ∈ {a,b}+,n ≥ 2}
L = L1 · L2, where: L1 = {a,b}+, L2 = {cn,n ≥ 2}
G1 :

1 S1 → aS1

2 S1 → bS1

3 S1 → a

4 S1 → b

G2 :

1 S2 → cS2

2 S2 → cc

G =

({S1,S2}, {a,b, c},S1,P),

P :

1 S1 → aS1

2 S1 → bS1

3 S1 → aS2

4 S1 → bS2

5 S2 → cS2

6 S2 → cc

LFAC (2024-25) Lecture 1 38 / 42

Closure Properties for Regular Languages

Closure under iteration

Let L be a regular language

Let G = (N,T ,S,P) of type 3, which generates L (L = L(G)).

Assume S does not appear in the right side of any rule

Grammar G′ = (N,T ,S,P ′) where P ′ contains

the rules A → uB from P (where B ∈ N)

rules A → uS, for any rule A → u from P (where u ∈ T ∗), different

from S → ϵ

the rule S → ϵ

is of type 3 and generates L∗

LFAC (2024-25) Lecture 1 39 / 42

Closure Properties for Regular Languages

Example

L = {an1bm1an2bm2 . . . ank bmk ,ni ,mi ≥ 1∀i ∈ {1, k}, k ≥ 0}
L = {anbm,n ≥ 1,m ≥ 1}∗

G :

1 S → x

2 x → ax

3 x → ay

4 y → by

5 y → b

G′ :

1 S → x

2 x → ax

3 x → ay

4 y → by

5 y → bS

6 S → ϵ

LFAC (2024-25) Lecture 1 40 / 42

Closure Properties for Regular Languages

Closure under intersection

Let L1,L2 be regular languages.

Let G1 = (N1,T1,S1,P1) and G2 = (N2,T2,S2,P2) type 3 grammars,

in normal form, such that L1 = L(G1), L2 = L(G2).

Grammar G = (N1 × N2,T1 ∩ T2, (S1,S2),P), with P:

(S1,S2) → ϵ, if S1 → ϵ ∈ P1 a̧nd S2 → ϵ ∈ P2

(A1,B1) → a(A2,B2), if A1 → aA2 ∈ P1 a̧nd B1 → aB2 ∈ P2

(A1,A2) → a, if A1 → a ∈ P1 and A2 → a ∈ P2

is a type 3 grammar and generates L1 ∩ L2

LFAC (2024-25) Lecture 1 41 / 42

Closure Properties for Regular Languages

Example
L(G1) = {w ∈ {0, 1}∗, w contains at least a symbol ’0’},

L(G2) = {w ∈ {0, 1}∗, w ends with ’1’}

L(G) = {w ∈ {0, 1}∗, w contains at least a symbol ’0’ and ends with ’1’}

G1 :

1 S1 → 1S1

2 S1 → 0A

3 S1 → 0

4 A → 1A

5 A → 0A

6 A → 1

7 A → 0

G2 :

1 S2 → 0S2

2 S2 → 1S2

3 S2 → 1

G

1 (S1,S2) → 1(S1,S2)

2 (A,S2) → 1(A,S2)

3 (S1,S2) → 0(A,S2)

4 (A,S2) → 0(A,S2)

5 (A,S2) → 1

LFAC (2024-25) Lecture 1 42 / 42

Closure Properties for Regular Languages

Example
L(G1) = {w ∈ {0, 1}∗, w contains at least a symbol ’0’},

L(G2) = {w ∈ {0, 1}∗, w ends with ’1’}

L(G) = {w ∈ {0, 1}∗, w contains at least a symbol ’0’ and ends with ’1’}

G1 :

1 S1 → 1S1

2 S1 → 0A

3 S1 → 0

4 A → 1A

5 A → 0A

6 A → 1

7 A → 0

G2 :

1 S2 → 0S2

2 S2 → 1S2

3 S2 → 1

G

1 S → 1S

2 X → 1X

3 S → 0X

4 X → 0X

5 X → 1

LFAC (2024-25) Lecture 1 42 / 42

	Course Presentation
	Formal languages
	Grammars
	Chomsky Hierarchy
	Type 3 Grammars and Languages
	Closure Properties for Regular Languages

