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     Discrete Fourier Transform (DFT) 

      f(x)={f(0), f(1), …, f(N-1)} 

One-dimensional DFT 
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The inverse transformation 
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     f = {f(x,y); x=0,1,…,M-1 ; y=0,1,…,N-1} 

 

Two-dimensional DFT 

1 1 2

0 0

1
( , ) ( , ) , 0, 1, 0, 1

u x v yM N i
M N

x y

F u v f x y e u M v N
MN


 − − − + 
 

= =

= = − = −  

The inverse transformation 

1 1 2
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u x v yM N i
M N

u v

f x y F u v e x M y N

 − − + 
 
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Fast Fourier Transform 

Using the above definition, the computational complexity of the DFT is O(N2). 

Using a divide-and-conquer approach one can reduce the computational 

complexity to O(Nlog2N). This algorithm is known as the Fast Fourier 

Transform (FFT). 

( )
21
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1
( ) ( ) ,

N
iu x

N
N N

x

F u f x k k e
N

−
−

=

= = . 

We assume that N=2P=2M. 
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even
( )F u  is the DFT of the sequence composed of the even samples f(2x) (f(0), 

f(2), …, f(2M-2)) of the original discrete signal and 
odd

( )F u  is the DFT is the 

DFT of the odd samples f(2x+1) (f(1), f(3), …, f(2M-1)). Both even and odd 

sequences have N/2 length, thus the N-point DFT F(u) can be computed as the 

sum of two 
2

N
-point DFT. 
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Filtering in the Frequency Domain 

Let f(x,y) be a digital image and F(u,v) its (discrete) Fourier transform. Usually 

it is not possible to make direct associations between specific components of an 

image and its transform. We know that F(0,0) is proportional to the average 

intensity of the image. Low frequencies correspond to the slowly varying 

intensity components of an image, the higher frequencies correspond to faster 

intensity change in an image (edges, for ex.). 

   

the average value of the image 
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0 02

0 0
( , ) ( , )

x y y v
i

M Nf x x y y F u v e

 

− + 
 − −   

 

0 0
( , ) ( , )f r F    +  +  

 

The spectrum is insensitive to image translation, and it rotates by the same angle 

as the image rotates. 
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                           image                                               Fourier spectrum 

                                             

             centered Fourier spectrum    log transformed centered Fourier spectrum
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                              translated image              Fourier spectrum 

       

                             45°  rotated image              Fourier spectrum 
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The magnitude of the 2-D DFT is an array whose components determine the 

intensities in the image, the corresponding phase is an array of angles that carry 

the information about where discernible objects are located in the image. 

 

                                

             Woman                                          phase angle              reconstruction only with phase angle 
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        Rectangle                           rectangle spectrum+phase angle woman   rectangle phase angle + spectrum woman 
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 If we use the DFT and the convolution theorem to obtain the same result in the 

left column of Figure 4.28, we must take into account the periodicity inherent in 

the expression for the DFT. The problem which appears in Figure 4.28 is 

commonly referred to as wraparound error. The solution to this problem is 

simple. Consider two functions f and h composed of A and B samples. It can be 

shown that if we append zeros to both functions so that they have the same 

length, denoted by P, then wraparound is avoided by choosing: 

1P A B + −  

This process is called zero padding. 

Let f(x,y) and h(x,y) be two image arrays of size A×B and  C×D pixels, 

respectively. Wraparound error in their circular convolution can be avoided by 

padding these functions with zeros: 
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( , ) 0 1 and 0 1
( , )

0 and   
p

f x y x A y B
f x y

A x P B y Q

  −   −
= 

   
 

 

 

( , ) 0 1 and 0 1
( , )

0 and   
p

h x y x C y D
h x y

C x P D y Q

  −   −
= 

   
 

 

1 ( 2 1) , 1 ( 2 1)P A C P M Q B D Q N + −  −  + −  −
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      Frequency Domain Filtering Fundamentals 

Given a digital image f(x,y) of size MN, the basic filtering equation has the 

form: 

 1
( , ) ( , ) ( , )g x y H u v F u v

−= F           (1) 

Where 
1−F  is the inverse discrete Fourier transform (IDFT), F(u,v) is the 

discrete Fourier transform (DFT) of the input image, H(u,v) is a filter function 

(also called filter or the filter transfer function) and g(x,y) is the filtered (output) 

image. 

F, H, and g are arrays of the same size as f, MN. 

H(u,v) – symmetric about its center simplifies the computations and also 

requires that F(u,v) to be centered. 
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In order to obtain a centered F(u,v) the image f(x,y) is multiplied by (-1)x+y 

before computing its transform. 

elsewhere

0 / 2, / 2 ( 0)
( , )

1

u M v N u v
H u v

= = = =
= 


 

This filter rejects the dc term (responsible for the average intensity of an image) 

and passes all other terms of F(u,v). This filter will reduce the average intensity 

of the output image to zero. 

Low frequencies in the transform are related to slowly varying intensity 

components in an image (such as walls in a room, or a cloudless sky) and high 

frequencies are caused by sharp transitions in intensity, such as edges or noise. 

A filter H(u,v) that attenuates high frequencies while passing low frequencies 

(i.e. a lowpass filter) would blur an image while a filter with the opposite 
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property (highpass filter) would enhance sharp detail, but cause a reduction of 

contrast in the image. 

    

                        Image of damaged integrated circuit               Fourier spectrum 

 

F(0,0)=0 
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   The DFT is a complex array of the form: 

( , ) ( , ) ( , )F u v R u v i I u v= +  

 1
( , ) ( , ) ( , ) ( , ) ( , )g x y H u v R u v i H u v I u v

−= +F  

The phase angle is not altered by filtering in this way. Filters that affect the real 

and the imaginary parts equally, and thus have no effect on the phase are called 

zero-phase-shift filters. 

Even small changes in the phase angle can have undesirable effects on the 

filtered output. 
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   Main Steps for Filtering in the Frequency Domain 

1. Given an input image f(x,y) of size MN, obtain the padding parameters 

P and Q (usually P=2M , Q=2N) 

2. Form a padded image fp(x,y), of size PQ by appending the necessary 

numbers of zeros to f(x,y) (f is in the upper left corner of fp) 

3. ( , ) ( 1) ( , )
x y

p p
f x y f x y

+= −  - to center its transform 

4. Compute the DFT, F(u,v), of the image obtain from 3. 

5. Generate a real, symmetric filter function H(u,v) of size PQ with center 

at coordinates ,
2 2

P Q 
 
 

. Compute the array product    

( , ) ( , ) ( , )G u v H u v F u v=  
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6. Obtain the processed image: 

( ) 1
( , ) real ( , ) ( 1)

x y

p
g x y G u v

− + = − F  

The real part is selected in order to ignore parasitic complex 

components resulting from computational inaccuracies. 

7. Obtain the output, filtered image, g(x,y) by extracting the MN region 

from the top, left corner of gp(x,y). 



Computer Vision 

Course 6 
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 Correspondence between Filtering in the Spatial and Frequency Domains 

The link between filtering in the spatial domain and frequency domain is the 

convolution theorem. 

Given a filter H(u,v), suppose that we want to find its equivalent representation 

in the spatial domain.  

   1 1

( , ) ( , ) ( , ) 1

( , ) ( , ) ( , ) ( , ) ( , )

f x y x y F u v

g x y H u v F u v h x y H u v


− −

=  =

=  =F F
 

The inverse transform of the frequency domain filter, h(x,y) is the corresponding 

filter in the spatial domain. 
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  Conversely, given a spatial filter, h(x,y) we obtain its frequency domain 

representation by taking the Fourier transform of the spatial filter: 

( , ) ( , )h x y H u v  

h(x,y) is sometimes called as the (finite) impulse response (FIR) of H(u,v). 

One way to take advantage of the properties of both domains is to specify a filter 

in the frequency domain, compute its IDFT, and then use the resulting, full-size 

spatial filter as a guide for constructing smaller spatial filter masks. 

  Let H(u) denote the 1-D frequency domain Gaussian filter: 

 the standard deviation

2

2
2( ) ,

u

H u Ae  
−

= −  

The corresponding filter in the spatial domain is obtained by taking the inverse 

Fourier transform of H(u): 
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2 2 2
2

( ) 2
x

h x Ae
  −=  

which is also a Gaussian filter. When H(u) has a broad profile (large value of ), 

h(x) has a narrow profile and vice versa. As  approaches infinity, H(u) tends 

toward a constant function and h(x) tends towards an impulse, which implies no 

filtering in the frequency and spatial domains. 

 

       

 

 

 

 



Computer Vision 

Course 6 

      Image Smoothing Using Frequency Domain Filters 

Smoothing (blurring) is achieved in the frequency domain by high-frequency 

attenuation that is by lowpass filtering. We consider three types of lowpass 

filters: 

ideal,      Butterworth,     Gaussian 

The Butterworth filter has a parameter called the filter order. For high order 

values, the Butterworth filter approaches the ideal filter and for low values is 

more like a Gaussian filter. 

All filters and images in these sections are consider padded with zeros, thus they 

have size P×Q.  The Butterworth filter may be viewed as providing a transition 

between the other two filters. 
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     Ideal Lowpass Filters (ILPF) 

0

0

1 if ( , )
( , )

0 if ( , )

D u v D
H u v

D u v D


= 


 

Where D0 ≥ 0 is a positive constant and D(u,v) is the distance between (u,v) and 

the center of the frequency rectangle: 

2 2

( , )
2 2

P Q
D u v u v

   
= − + −   

   
              (DUV) 

The name ideal indicates that all frequencies on or inside the circle of radius D0 

are passed without attenuation, whereas all frequencies outside the circle are 

completely eliminated (filtered out). 



Computer Vision 

Course 6 

For an ILPF cross section, the point of transition between H(u,v)=1 and 

H(u,v)=0 is called the cutoff frequency. The sharp cutoff frequencies of an ILPF 

cannot be realized with electronic components, but they can be simulated in a 

computer. 

We can compare the ILPF by studying their behavior with respect to the cutoff 

frequencies.  
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   Butterworth Lowpass Filter (BLPF) 

The transfer function of a Butterworth lowpass filter of order n and with cutoff 

frequency at distance D0 from the origin is: 

2

0

1
( , )

( , )
1

n
H u v

D u v

D

=
 

+  
 

 

where D(u,v) is given by the relation (DUV).  
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The BLPF transfer function does not have a sharp discontinuity that gives a 

clear cutoff  between passed and filtered frequencies. For filters with smooth 

transfer functions, defining a cutoff frequency locus is made at points for which 

H(u,v) is down to a certain fraction of its maximum value. 
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    Gaussian Lowpass Filter (GLPF) 

22

22
0

( , )( , )

22( , )

D u vD u v

D
H u v e e

−−

= =  

D0 is the cutoff frequency. When D(u,v) = D0 the GLPF is down to 0.607 of its 

maximum value. 
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    Image Sharpening Using Frequency Domain Filters 

Edges and other abrupt changes in intensities are associated with high-frequency 

components, image sharpening can be achieved in the frequency domain by 

highpass filters, which attenuates the low-frequency components without 

changing the high-frequency information in the Fourier transform. 

  A highpass filter is obtained from a given lowpass filter using the equation: 

( , ) 1 ( , )
HP LP

H u v H u v= −  

where HLP(u,v) is the transfer function of a lowpass filter. 
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      Ideal Highpass Filter 

A 2-D ideal highpass filter (IHPF) is defined as: 

0

0

0 if ( , )
( , )

1 if ( , )

D u v D
H u v

D u v D


= 


 

where D0 is the cutoff frequency and D(u,v) is given by equation (DUV). As for 

ILPF, the IHPF is not physically realizable. 
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      Butterworth Highpass Filter (BHPF) 

The transfer function of a Butterworth highpass filter of order n and with cutoff 

frequency at distance D0 from the origin is: 

2

0

1
( , )

1
( , )

n
H u v

D

D u v

=
 

+  
 
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Gaussian Highpass Filter (GLPF) 

2

2
0

( , )

2
( , ) 1

D u v

D
H u v e

−

= −  
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Figure 4.57(a) is a 1026962 image of a thumb print in which smudges are 

present. A keystep in automated figerprint recognition is enhancement of print 

ridges and the reduction of smudges. In this example a highpass filter was used 

to enhance ridges and reduce the effects of smudging. Enhancement of the 

ridges is accomplished by the fact that they contain high frequencies, which are 

unchanged by a highpass filter. This filter reduces low frequency components 

which correspond to slowly varying intensities in the image, such as background 

and smudges.  

Figure 4.57(b) is the result of using a BHPF of order n=4, with a cutoff 

frequency D0=50. 

Figure 4.57(c) is the result of setting to black all negative values and to white all 

positive values in Figure 4.57(b) (a threshold intensity transformation) 
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    The Laplacian in the Frequency Domain 

The Laplacian can be implemented in the frequency domain using the filter: 

( )2 2 2
( , ) 4H u v u v= − +  

The centered Laplacian is: 

2 2

2 2 2
( , ) 4 4 ( , )

2 2

P Q
H u v u v D u v 

    
= − − + − = −    

     

 

The Laplacian image is obtained as: 

 2 1
( , ) ( , ) ( , )f x y H u v F u v

− = F  

Enhancement is obtained with the equation: 

2
( , ) ( , ) ( , )g x y f x y f x y= −                (1) 
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Computing 
2

( , )f x y  with the above relation introduces DFT scaling factors 

that can be several orders of magnitude larger than the maximum value of f.  To 

fix this problem, we normalize the values of f(x,y) to the range [0,1] (before 

computing its DFT) and divide 
2

( , )f x y  by its maximum value which will 

bring it to [-1,1]. 
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Spatial Correlation and Convolution 

Correlation is the process of moving a filter mask over the image and computing the sum 

of products at each location. Convolution is similar with correlation, except that the filter 

is first rotated by 180º. 

Correlation 

( , ) ( , ) ( , ) ( , )
a b

s a t b

w x y f x y w s t f x s y t
=− =−

 = + +   

Convolution 

( , ) ( , ) ( , ) ( , )
a b

s a t b

w x y f x y w s t f x s y t
=− =−

 = − −   

A function that contains a single 1 and the rest being 0s is called a discrete unit 

impulse. Correlating a function with a discrete unit impulse produces a rotated 

version of the filter at the location of the impulse. 
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Types of Noise and Their Characteristics 

Noise = a variation of the signal from its true value by a small 

(random) amount due to external or internal factors in the 

image processing pipeline. (Solomon & Breckon, 

Fundamentals of Digital Image Processing) 

Noise = unwanted information in the image 

The noise may be correlated or uncorrelated, signal dependent 

or independent, and so on. The knowledge about the  imaging 

system and the visual perception of the image helps in 
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generating the noise model and estimating of the statistical 

characteristics of noise embedded in an image is important 

because it helps separating the noise from the useful image 

signal. We consider four classes of noise: 

1. Additive noise: sometimes the noise generated from 

sensors are normal white Gaussian, which is essentially 

additive and signal independent, 

( , ) ( , ) ( , ).g x y f x y x y= +  
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2. Multiplicative noise: the graininess noise from 

photographic plates is usually multiplicative. 

( , ) ( , ) ( , )g x y f x y x y=  . 

3. Impulse noise: often the noisy sensors genrate impulse 

noise: 

( , ) (1 ) ( , ) ( , ),g x y p f x y p i x y= − +  

where i(x,y) is the impulsive noise and p is a binary 

parameter. The impulse noise can be easily detected from 

noisy images because of the contrast anomalies. 
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4. Quantization noise, is essentially an image dependent 

noise. This noise is characterized by the size of signal 

quantization interval. Such noise produces image-like 

artifacts and may produce false contours around the objects. 

The quantization noise also removes the image details 

which are of  low contrast. 

 

 



Computer Vision 

Course 6 

Two dimensional images may be degraded due to several 

reasons, e.g. 

• Imperfection of the imaging system 

• Imperfection in the transmission channel 

• Degradation due to atmospheric conditions 

• Degradation due to relative motion between the object 

and the camera 
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     Noise Models 

( , ) ( , ) ( , )g x y f x y x y= +  

  The main sources of noise in digital images arise during 

image acquisition and/or transmission (environmental 

conditions during image acquisition, the quality of the 

sensors). 

    Parameters that define the spatial characteristics of the 

noise  and whether the noise is correlated with the image are 

important properties to be studied. We assume that the noise 



Computer Vision 

Course 6 

is independent of spatial coordinates and that it is 

uncorrelated with the image itself (i.e. there is no correlation 

between pixel values and the values of noise components). 
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    Some Important Noise Probability Density Functions 

The noise may be considered a random variable, 

characterized by a probability denisty function (pdf). 

   Gaussian noise 

2

2

( )

2
1

( )
2

z z

p z e 

 

−
−

=  

where z represents intensity, z  is the mean value, and  is its 

standard deviation, 2 is called variance of z. 
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   Rayleigh noise 

for

for  

2
( )

2
( )

( )

0

z a

bz a e z a
p z b

z a

−
−

 − 
= 
 

 

The mean and variance for this pdf are: 

4

b
z a


= +  

2 (4 )

4

b 


−
=  
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Erlang (gamma) noise  

for

for  

1

0
( ) , , 0,( 1)!

0 0

b b
aza z

e z
p z a b bb

z

−
−


=  −
 

 

b
z

a
=  

2

2

b

a
 =  
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Exponential noise 

for

for  

0
( ) , 0

0 0

az
ae z

p z a
z

− 
= 


 

1
z

a
=  

2

2

1

a
 =  

(Erlang b=1) 
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Uniform noise 

for

otherwise

1

( ) ,

0

a z b
p z b a


 

= −


 

2

a b
z

+
=  

2
2 ( )

12

b a


−
=  

 



Computer Vision 

Course 6 

      

Impulse (salt-and-pepper) noise 

The pdf of (bipolar) impulse noise is given by 

for 

for 

otherwise

( )

0

a

b

P z a

p z P z b

=


= =



 

b  > a – intensity b appear as a light dot in the image 

b  <  a – intensity b appear as a dark dot in the image 

Pa = 0 or Pb = 0 the impule noise is called unipolar 
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Pa  Pb  - impulse noise values will ressemble salt and pepper 

granules randomly distributed over the image. For this reason, 

bipolar impulse noise is called also salt-and-pepper noise.  

Noise impulses can be negative or positive. Because impulse 

corruption usually is large compared with the strength of the 

image signal, impulse noise generally is digitized as extreme 

(pure black or white) values in an image. Thus, the 

assumption is that a and b are equal to the minimum and 

maximum allowed values in the digitized image. As a result, 
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negative impulses appear as black (pepper) points in an 

image, and positive impulses appear as white (salt) points. 
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   Periodic noise 

Periodic noise arises from electrical or electromechanical 

interference during image acquisition. This type of noise is 

spatially dependent and can be reduced significantly via 

frequency domain filtering. 
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Figure 5.5(a) is corrupted by sinusoidal noise of various 

frequencies. The Fourier transform of a pure sinusoid is a pair 

of conjugate impulses located at the conjugate frequencies of 

the sine wave. If the amplitude of a sine wave in the spatial 

domain is strong enough, we would expect to see in the 

spectrum of the image a pair of impulses for each sine wave 

in the image. In Figure 5.5(b) we can see the impulses 

appearing in a circle. 
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Gaussian noise – electronic circuit noise, sensor noise due to 

poor illumination and/or high temperature 

Rayleigh noise – noise in radar range imaging 

Exponential and gamma noise – laser imaging 

Salt & pepper noise – „sharp and sudden disturbances in the 

image signal” (Wiki) 

Uniform noise – theoretical use 
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      Estimation of Noise Parameters 

The parameters of periodic noise are estimated by inspection 

of the Fourier spectrum of the image. Sometimes it is possible 

to deduce the periodicity of noise just by looking at the 

image. 

  The parameters of noise pdf’s may be known partially from 

sensors specifications. If the image system is available, one 

simple way to study the characteristics of system noise is to 

capture a set of images of „flat” environments (in the case of 
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an optical sensor, this means taking images of a solid gray 

board that is illuminated uniformly). The resulting images are 

good indicators of system noise. 

When only images already generated by a sensor ar available, 

frequently it is possible to estimate the parameters of the pdf 

from small portions of the image that are of constant 

background intensity. 

The simplest use of the data from the image strips is for 

calculating the mean and the variance of intensity levels. 
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Consider a subimage S and let pS(zi), i=0,1,2,...,L-1 denote the 

probability estimates (normalized histogram values) of the 

intensities of the pixels in S, where L is the number of 

possible intensities in the entire image. We estimate the mean 

and the variance of the pixels in S: 

1

0

( )
L

i S i

i

z z p z
−

=

=  

1
2 2

0

( ) ( )
L

i S i

i

z z p z
−

=

= −  
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The shape of the histogram identifies the closest pdf match. If 

the shape is almost Gaussian then the mean and the variance 

are all we need. For the other shapes, we use the mean and the 

variance to solve for parameters a and b. 

Impulse noise is handled differently because the estimate 

needed is of the actual probability of occurrence of white and 

black pixels. Obtaining this estimate requires that both black 

and white pixels be visible, so a midgray, relatively constant 

area is needed in the image in order to be able to compute a 
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histogram. The heights of the peaks corresponding to black 

and white pixels are the estimates of Pa and Pb. 
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Denoising filters 

Mean Filters 

Suppose Sxy represent a recatngular neighborhood of m n 

size centered at point (x,y). 

      Arithmetic mean filter 

( , )

1ˆ ( , ) ( , )
xys t S

f x y g s t
m n 

=


  

A mean filter smooths local variations of an image and noise 

is reduced as a result of blurring. 
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Geometric mean filter 

1

( , )

ˆ ( , ) ( , )
xy

m n

s t S

f x y g s t




 
=  
  
  

A geometric mean filter achieves smoothing comparable to 

the arithmetic mean filter, but it tends to lose less image 

detail. 
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Harmonic mean filter 

( , )

ˆ ( , )
1

( , )
xys t S

m n
f x y

g s t


=


 

Harmonic mean filter works well for salt noise, but fails for 

pepper noise. It also works well on Gaussian noise. 
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 Contraharmonic mean filter 

the order of the filter

1

( , )

( , )

( , )

ˆ ( , ) ,
( , )

xy

xy

Q

s t S

Q

s t S

g s t

f x y Q
g s t

+





= −




 

This filter is good for reducing or virtually eliminating the 

effects of salt-and-pepper noise.  

For Q > 0 the filter eliminates pepper noise, for Q < 0 the filter 

eliminates salt noise, but it cannot do both simultaneously. 

Q = 0 – arithmetic mean filter, Q = -1 – harmonic mean filter 
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                      Order-Statistic Filters 

   Median filter 

ˆ ( , ) median{ ( , );( , ) }
xy

f x y g s t s t S=   

Median filters have excellent noise-reduction capabilities, 

with less blurring than linear smoothing filters. Median filters 

are particularly effective in the presence of bipolar and 

unipolar impulse noise. 
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   Max and min filters 

ˆ ( , ) max{ ( , );( , ) }
xy

f x y g s t s t S=   

This filter is useful for finding the brightest points in an 

image. This filter reduces pepper noise. 

ˆ ( , ) min{ ( , );( , ) }
xy

f x y g s t s t S=   

This filter is useful for finding the darkest points in an image. 

This filter reduces salt noise. 
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       Midpoint filter 

1ˆ ( , ) max{ ( , );( , ) } min{ ( , );( , ) }
2

xy xy
f x y g s t s t S g s t s t S =  +  

 

It works best for randomly distributed noise, like Gaussian or 

uniform noise. 

 

 

 

 


