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Binary machine numbers1 

In 1985 IEEE published a report entitled Binary Floating 

Point Arithmetic Standard 754-1985 and un update in 2008, 

IEEE 754-2008, that provides standards for binary and 

decimal floating point numbers, formats for data interchange, 

algorithms for rounding arithmetic operations, and handling 

exceptions. These standards are followed by computer 

manufacturers that use floating-point hardware. 

   

 
1 R.L.Burden, J.D. Faires, A.M. Burden, Numerical Analysis, 10th ed., Cengage Learning, Boston, USA 
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A 64-bit binary representations is done in the following way: 

the first bit is the sign bit, the next 11 bits represent the 

exponent c which are followed by 52 bits that contain 

information regarding the binary fraction part, f, also called 

mantissa: 

1023
( 1) 2 (1 )

s c
f

−− +  . 

 
0 10000000011 10111001000100000000000000000000000000000000000000000 = 

27.56640625 

 

[27.5664062499999982236431605997495353221893310546875, 

27.5664062500000017763568394002504646778106689453125). 
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The smallest positive number that can be represented using 

this type of representation, is when 0, 1, 0s c f= = = , that is: 

1022 307
2 (1 0) 0.22251 10z

− −= +     

and the biggest one is for 52
0, 2046, 1 2s c f

−= = = −  

1023 52 309
2 (2 2 ) 0.17977 10Z

−= −   . 

The numbers that occur in computations and are smaller than 

z are usually set to 0 (underflow) and those that are bigger 

than Z usually stop the computations (overflow).  
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    Note that number 0 has two representations: 

0, 1, 0s c f= = =  and  1, 1, 0s c f= = = .  

Decimal Machine Numbers 

Assume that the machine numbers are represented in the 

normalized decimal floating-point form: 

1 2 1
0. 10 1 9 , 0 9, 2,...,

n

k i
d d d d d i k      =  - 

This are k-digit decimal machine numbers. Any positive real 

number y can be expressed by: 

1 2 1 2
0. 10

n

k k k
y d d d d d

+ +
=   
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 A k-digit representation of y can be obtained by a simple 

chopping operation: 

1 2
( ) 0. 10

n

k
fl y d d d=  . 

Another method, is the rounding operations: 

1 2
( ) 0. 10

n

k
fl y   =   

If 
1

5
k

d
+

  we add 1 to dk  to obtain fl(y) (round up), otherwise 

a k-digit chop is performed (round down). 
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A number r approximates the number r  to t significant digits 

if  t is the largest nonnegative integer for which: 

5 10
| |

t
r r

r



−
−

   . 

For chopping we have: 

1( )
10

ky fl y

y

− +−
  

And for rounding: 

1( )
0.5 10

ky fl y

y

− +−
  . 
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Finite-Digit Arithmetic 

 

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

c

c

c

c

x y fl fl x fl y

x y fl fl x fl y

x y fl fl x fl y

x y fl fl x fl y

+ = +

− = −

 = 

 = 

  

 

 

 



 8 

Sources of error in numerical computations 

1. Errors in input data: 

- systematic errors or temporary perturbations in 

measurements, 

- round-off errors whenever dealing with irrational 

numbers, or with infinite decimal representation: 1/3, 

, 1/7,… 

2. Round-off  errors during computations: 

- the result of elementary operations is not, always, 

exact 
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3. Discretization errors: 

- the solution of the solved problem is the limit of a 

sequence, the sum of an infinite series,   

- nonlinear functions are approximated by linear 

functions, computing the approximate derivative or 

integral for a function 

4. Simplifications in the mathematical model 

- idealizations, ignoring some parameters 

5. Human errors, bugs in numerical software. 
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Absolute Error, Relative Error 

a – exact value 

ã – approximate value 

Absolute error :  a- ã   or  |a -  ã |  or  a ã−  

                               a = ã   a , |a - ã |  a 

Relative error:  a  0     or or
a ã a ãa ã

a a a

− −−
     

a

a ã

a


−
   (

a
 usually expressed in %). 
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If we have the following approximations: 1kg 5g, 50g5g, 

the absolute errors are the same, but for the first quantity the 

relative error is 0,5% and for the second, the relative error is 

10%. 

( )
1 2

1 2

1 2 1 2

1 1 2 2

1 2 1 2

, ,

( )

.

a a

a a

a a a a

a ã a ã

a a ã ã

+

=   =  

 =     

   + 

   

 

 

a1  has 
1a

  relative error and a2 has relative error 
2a

  : 

a = a1 * a2  or 1

2

a

a
  →   

1 2a a a
  = + . 
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Conditioning  → stability 

    The conditioning of a problem describes the 

sensibility/variation of the solution with respect to the input 

data, assuming that all the computations are exact (regardless 

of the algorithm employed for solving the problem). 

    Let x be the exact input data,  x  an approximation for the 

input data, P(x) the exact solution of the problem, and ( )P x  

the solution with x  as input. We assume that the 
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computations were exact in obtaining the solutions P(x) and 

( )P x   . 

    O problem is considered ill-conditioned if the difference 

between P(x) and ( )P x  is large even if the relative error in 

input data 
|| ||

|| ||

x x

x

−
 is small. 

    The numerical conditioning of a problem is expressed as 

the ratio between output and input relative errors: 
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for and 

|| ( ) ( ) ||

|| ( ) ||
( ) 0 ( ) 0

|| ||

|| ||

P x P x

P x
k x x P x

x x

x

−

=  
−

 

    A small value for k(x) characterizes a well-conditioned 

problem. Conditioning is a local property (it depends on the 

input x). A problem is well-conditioned if it is well-

conditioned for all input data. 

Relative error in the output ≈  

Condition number × Relative error in the input 
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Consider Wilkinson polynomial: 

20 19

18
( ) ( 1)( 2) ( 20) 210 ( )w x x x x x x P x= − − − = − +   

If one changes the coefficient (-210) of x19 with:  

-210 - 2-23=−210.0000001192 

the new polynomial’s roots (with 5 significant digits) are: 

1.00000 2.00000 3.00000 4.00000 5.00000 6.00001 6.99970 8.00727

8.91725 20.84691 10.09527 0.64350 11.79363 1.65233

13.99236 2.51883 16.73074 2.81262 19.50244 1.94033

i i

i i i

 

  
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For solving a problem P, an algorithm P  is implemented and 

run on a computer. Taking into account the inexact storing of 

data and inaccurate computations the exact solution and the 

computed one can be different: 

( ) ( )P x P x  
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 Numerical stability measures the magnitude of the numerical 

errors after running the implemented algorithm, assuming that 

the input data are exact, i.e., || ( ) ( ) ||P x P x−  or 

|| ( ) ( ) ||

|| ( ) ||

P x P x

P x

−
.  

A numerically stable algorithm is an algorithm for which the 

relative error is the same order as the rounding error. 
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    A numerically stable algorithm used for solving a 

well-conditioned problem yields results with very good 

precision. 

    An algorithm P  for solving problem P is numerically 

stable if one of the following condition is fulfilled: 
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1.  ( ) ( )P x P x  for all input x; 

 

2.  there exists x  near x, s.t. ( ) ( )P x P x  

x = exact data, 

P(x) = exact solution using exact input, 

( )P x  = „computed”  solution using algorithm P  with exact 

input data 
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Solving linear systems of equations 

• 1900 B.C., Babylon – first problems related to simultaneous 

linear equations  

• 300 B.C. Babylon – problem on clay tablets: 

” There are two fields whose total area is 1800 square 

yards. One produces grain at the rate of 2/3 of a bushel per 

square yard while the other produces grain at the rate of 

1/2 a bushel per square yard. If the total yield is 1100 

bushels, what is the size of each field?” 
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• 200-100 B.C. China –  Nine Chapters on the Mathematical 

Art – a method very similar to Gaussian Elimination for 

solving a 3-dimensional linear system of equations  

(„There are three types of corn, of which three bundles of the 

first, two of the second, and one of the third make 39 measures. 

Two of the first, three of the second and one of the third make 34 

measures. And one of the first, two of the second and three of the 

third make 26 measures. How many measures of corn are 

contained of one bundle of each type?”) 
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• 1545, Cardan – in Ars Magna, proposes a rule (regula de 

modo) for solving a system of 2 equations with 2 unknowns 

(similar to Cramer’s rule) 

• 1683, Seki Kowa, Japan – introduces the idea of 

„determinant”- „Method of solving the dissimulated 

problems”. He computes measures that we today call 

determinants for matrices 2x2, 3x3, 4x4, 5x5 related to 

solving equations but not systems of linear equations. 
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• 1683, Leibniz in a letter to l’Hôpital explains that the 

system of linear equations: 

10 11 12 0

20 21 22 0

30 31 32 0

x y

x y

x y

+ + =

+ + =

+ + =

 

   has a solution because:  

10*21*32+11*22*30+12*20*31=10*22*31+11*20*32+12*21*30  

(the condition that the determinant of the coefficients 

matrix must be 0). 
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Leibniz was convinced that good mathematical notation was 

the key to progress so he experimented with different 

notation for coefficient systems. His unpublished 

manuscripts contain more than 50 different ways of writing 

coefficient systems which he worked on during a period of 

50 years beginning in 1678. Leibniz uses the notion of 

„resultant” instead of determinant and he proved Cramer’s 

rule for „resultants”. He knew that every determinant could 

be expanded using any column (Laplace expansion). 
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• 1750, Cramer introduces a formula based on determinants 

for solving a system of linear equations –  Cramer’s rule – 

„Introduction in the analysis of algebraic curves” (he 

presents an algorithm for general n x n systems): 

‚One finds the value of each unknown by forming n 

fractions of which the common denominator has as 

many terms as there are permutations of n things’ 

• 1764 Bezout, 1771 Vandermonde, 1772 Laplace – rules for 

computing determinants  
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• 1773 Lagrange – first implicit use of matrices related to 

bilinear forms that appear in the problem of optimization for 

real functions depending on 2 or more variables (he wanted 

to characterize the optimum points for functions depending 

on 2 or more variables) 
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• 1800-1801, Gauss introduces for the first time the term 

„determinant” (determines the properties of the 

quadratic form) – Disquisitiones arithmeticae(1801); he 

describes the matrix multiplication and matrix inverse 

notions in the context of quadratic forms and the 

associated bi-dimensional table of coefficients. Gauss 

proposed the Gaussian elimination method for solving a 

linear system with 6 equations in six unknowns, when he 

studied the orbit of Pallas asteroid.  
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• 1812, Cauchy uses the term of „determinant” in the modern 

sense. 

• 1826, Cauchy finds the eigenvalues and deduces results for 

diagonalizing a matrix. He introduces the idea of similar 

matrices and he proves that these matrices have the same 

characteristic equations. He also proves that every 

symmetric real matrix is diagonalizable. 
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• 1850, Sylvester introduces for the first time the term 

matrix (from Latin, „uterus, womb” – a place something 

is formed or produced, „an oblong arrangement of 

terms”) 

• 1855, Cayley – matrix algebra, first abstract definition of 

a matrix. He studies linear transformations and their 

composition which leads him to the well-known matrix 

operations (addition, multiplication, scalar 

multiplication, inverse) 
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• 1858, Cayley in Memoir on the theory of matrices: 

„there would be many things to say about this theory of 

matrices which should, it seems to me, precede the 

theory of determinants” 

• Jordan (1870 – Treatise on substitutions and algebraic 

equations – Jordan canonical form), Frobenius (1878 – 

On linear substitutions and bilinear forms, rank of a 

matrix) 
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• 1890, Weierstrass – On determinant theory, the 

axiomatic definition for the determinant 

• 1925, Heisenberg reinvents matrix algebra for quantum 

mechanics 

• 1947, vonNeuman & Goldstine introduce conditioning 

numbers when analysing rounding errors 

• 1948, Turing introduces the  LU decomposition of a 

matrix i 

• 1958, Wilkinson - QR factorization … 
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Proposition  

  Let 
n n

A
  for which there exists a matrix natural norm 

s.t. 1A  . Then there exist the matrices 
1

( )
n

I A
− , and 

the following relations hold: 

11 1
( ) .

1 1
I A

A A

−  
+ −
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Error evaluation in solving linear systems 

(linear systems of equations conditioning) 

   Let , ,
n n n n

A b x
        defining the linear system of 

equations: 

Ax b=  

1
 non-singular  det 0  solution  A A x A b

−    =  

We consider the following errors in data input: 

• absoluteerror  for 
n n

A A
   ; 

• absoluteerror for
n

b b    ; 
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Instead of solving the linear system Ax=b, the following 

system is solved: 

( )A A x b b+  = +   

one obtains the solution x : 

x x x= +    

The following problems must be addressed:  

1. A non-singular, ?A =  s.t. A A+  is also non-singular? 

2. Assume A and A A+  non-singular, which are the 

relations between the relative errors ,
A b

A b

 
  and 

x

x


? 
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1. Assume A  non-singular: 

( )

( )

1

1
 non-singular  non-singular

n

n

A A A I A A

A A I A A

−

−

+  +  →

+   + 

 =   
 

Proposition 1 

Let A be non-singular and 
1

1
A

A
−

  . Then I+A-1A is 

non-singular and the following relation holds: 

( )
11

1

1

1
n

I A A
A A

−−

−
+  

−  
. 
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Proof. We have: 

( )
Prop 11 1 1

1

1
1A A A A A I A A

A

−− − −

−
          + 

  

            

( )
11

1 1

1 1

1 1
I A A

A A A A

−−

− −
+   

−  −  
 . 

Assume A non-singular and 
1

1
A

A
−

  .  

  

1

1
.

1

A Ax b A

x b AA A

−

−

   
 + 

−     
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( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

11 1 1

11 1

1

1
(1)

1

A A x x b b A A x Ax A x b b

A I A A x b A x x I A A A b A x

x I A A A b A x

Ax b
A

x xA A

−− − −

−− −

−

−

+  +  = +   +   + +  = +  

+   =  −    = +   −    

  +   +  

  
 +  

−   

   

    

 

                                                          

From Ax=b we get 
1 A

b A x
x b

    , using this 

relation in (1) we have: 

1

1
.

1

A Ax b A

x b AA A

−

−

   
 + 

−     
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k(A) = ||A-1|| ||A|| conditioning number for matrix A. 

    Proposition 2 

  If matrix A is non-singular and  
1

1
A

A
−

    then: 

( )

( )1

k Ax b A

Ax b A
k A

A

   
 +   − 

. 

From In =A A-1 one gets   ( )1
1 .

n
I A A k A

−=  =  

k(A)  1,  A but it depends on the natural matrix norm. 
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A matrix A for which the conditioning number is large is 

called  ill-conditioned (k(A) ‚large’).   

Ax=b with k(A) large →   
x

x


the relative error in the 

computed solution can be very large even if the relative errors 

and
b A

b A

 
    are small. 
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Let A be a symmetric, non-singular matrix 
T

A A= , det A 0. 

Using the spectral norm (generated by the Euclidean vector 

norm) we have:   

( ) ( )

( )

2

2

1

2 2

T
A A A A

k A A A

 

−

= =

= 

 

  
  

 

A symmetric matrix A has only real eigenvalues
1 2
,

n
  

   
   , 

A2 has eigenvalues  2 2 2

1 2
,

n
      , A-1 has eigenvalues 

1 2

1 1 1
, , ....,

n
  

    .  
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( ) ( )and 1

1 2

1

1
....

n n
A A     



−    = =            

( ) ( )1 1

2 2
1

1
,

T

n
A A A A A A  



− −= → = = = =  , 

 ( ) 1

2 2 2

1

|| || || || nk A A A




−=  =  spectral conditioning number. 

A orthogonal matrix  → k2(A)=1 
1T T T

n
A A A A I A A

−=  =  =   

( ) ( )
2 2

1
T T

A A A I A = = = =  

( ) 1

2 2 22 2
1 ,

T
k A A A A A

−=  =  =     
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Almost singular matrix with good conditioning number 

 
100 100 99 99

1 1

2 2 2 2 2

diag [1,0.1,0.1, ...,0.1] det 1 (0.1) 10

|| || 1 , || || 10 ( ) || || || || 10

A A

A A k A A A

 −

− −

=   =  =

= =  = =
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Very ill-conditioned matrix with non-zero determinant  

(det A=1) 

1 2 0 0

0 1 2 0

,

0 0 0 2

0 0 0 1

A

 
 
 
 =
 
 
 
 

 

1 1

2 2

1

1 2 4 ( 2) ( 2)

0 1 2 ( 2) ( 2)

0 0 0 0 1

i n

i n

A

− −

− −

−

 − − −
 

− − − =
 
 
 
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1

1 1 1

1

1 1 100

1 1

|| || || || 3 ,

|| || || || 1 2 2 2 1

100 ( ) || || || || || || || || 3 (2 1)

det 1

n n

A A

A A

n k A A A A A

A



− − −



− −

 

= =

= = + + + = −

=  = = =  −

=
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2 2
, ( ) 4002

1.001 2 1.001 2.001

2 , 0 1 , 1

x y x y
k A

x y x y

x y x y

+ = + = 
= 

+ = + = 

= = = =  
 

2 2

400 201 200 401 201 200
,

800 401 200 800 401 200

100 , 200 40000 , 79800

  ( ) 2503                              ( ) 1002000

x y x y

x y x y

x y x y

k A k A

− = − = 
 

− + = − − + = − 

= − = − = =

= =
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2

8

8

1.2969 0.8648 0.8642
2 , 2 ( ) 249730000

0.2161 0.1441 0.1440

0.9911, 0.4870 ,

0.8642 1.2969 0.8648 0.9911 10

0.1440 0.1441 0.1441 0.4870 10

x y
x y k A

x y

x y

r b Az
−

−

+ =
= = − =

+ =

= = −

      
= − = − =       

− −       
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Hilbert matrix 
1

2

, 1

0

1
( ) ,

1

n i j

ij i j ij
H h h x dx

i j

+ −

=
= = =

+ −   

 

4( 1)
3.5

2 15

4

( 2 1)
( )

2

n
n

n
k H e

n

++
  
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n k2(Hn) n k2(Hn) 
1 1 7 4.753108 
2 19.281 8 1.5261010 
3 5.241 102 9 4.9321011 
4 1.551104 10 1.6021013 
5 4.766105 11 5.2201014 
6 1.495107 12 1.6781016 

 

 
1

2

( 1) ( 1)! ( 1)!
( )

( 1) ( 1)!( 1)! ( )!( )!

i j

ij ij

n i n j
H g g

i j i j n i n j

+
− − + − + −

= =
+ − − − − −

 

 


