
6. Realistic Computer Models

AEA 2025

1/55

2/55

Content

Introduction

Memory Hierarchy Models

Fundamental Techniques

External Memory Data Structures

Cache-aware Optimization

Cache-Oblivious Algorithms and Data Structures

3/55

The RAM model of computation

The Random-access machine (RAM) model or the ”von Neumann
model of computation”: a computing device attached to a storage
device

▶ Instructions are executed one after another, no concurrent
operations

▶ Every instruction takes the same amount of time

▶ Unbounded amount of available memory

▶ Memory stores words of size O(log n) bits, n the input size

▶ Accessing a memory location - in unit time

▶ For numerical and geometric algorithms: it is assumed that
we represent real numbers accurately

▶ Exact arithmetic on real numbers - in const. time

4/55

Real Architecture

A hierarchy of storage devices with different access times and
storage capacities

5/55

The RAM model

Advantages:

▶ hides the ”messy” details of computer architecture from the
algorithm designer

▶ captures the essential behavior of computers, while being
simple to work with

▶ encapsulates well the comparative performance of algorithms

▶ the performance guarantees are not architecture-specific
(robust)

6/55

The RAM model

Disadvantages:

▶ fails when the input data/intermediate data structure is too
large; the dominant part: the time the algorithms spend
waiting for data to be brought from hard disk to internal
memory

Figure: Predicted performance of RAM model vs. its real performance

▶ not suited for parallel architecture

7/55

Content

Introduction

Memory Hierarchy Models

Fundamental Techniques

External Memory Data Structures

Cache-aware Optimization

Cache-Oblivious Algorithms and Data Structures

8/55

External Memory Model (EM)

▶ a central processing unit and 2 levels of memory hierarchy:
the internal memory (a limited size of M words), the external
memory accessed using I/Os (move B contiguous words
between the two memories)

▶ the measure of performance: # I/Os

▶ disk parallelism: D parallel disks; D arbitrary blocks can be
accessed in parallel in an I/O

▶ cache-aware algorithms

9/55

Ideal Cache Model

▶ a faster level of memory (cache) of size M

▶ data transfers in chunks of B elements

▶ the memory is managed automatically by an optimal offline
cache-replacement strategy ; the cache is fully associative

10/55

Cache-Oblivious Model

In practice B,M need to be tuned for optimal performance.

Cache-Oblivious Model

▶ A two-level memory hierarchy, but the algorithm doesn’t
have any knowledge of the values M and B

▶ The guarantees on I/O-efficient algorithms hold on any
machine with multi-level memory hierarchy.

I/O-efficient algorithms perform well on different architectures
without the need of any machine-specific optimization.

11/55

Content

Introduction

Memory Hierarchy Models

Fundamental Techniques

External Memory Data Structures

Cache-aware Optimization

Cache-Oblivious Algorithms and Data Structures

12/55

Fundamental Techniques

Spatial locality : data close in address space to the currently
accessed item is likely to be accessed soon.

Exploiting spatial locality:

▶ the data transfer in the EM/cache-oblivious model happens in
terms of block of elements

▶ the entire block when accessed should contain as much useful
information as possible

▶ graph clustering and partitioning techniques exploit
”nearness”

13/55

Fundamental Techniques

Temporal locality : an instruction/data item issued/accessed
currently is likely to be issued/accessed in the near future.

Exploiting temporal locality:

▶ use the data in the internal memory as much as possible,
before writing back to the external memory

▶ divide and conquer: data is divided into small chunks to fit
into the internal memory

14/55

Fundamental Techniques

Batching : wait before issuing an operation until enough data needs
to be processed s.t. the operation’s cost is worthwhile.

Batching the operations:

▶ when performing one operation is nearly as costly as
performing multiple operations of the same kind

▶ do lazy processing: batch a large # operations and then
perform them ”in parallel”

▶ external priority queue: lazy processing of decrease-key
operations after collecting them in a batch

15/55

I/O Efficient algorithms: Motivation

Computing the average elevation in the Alps

▶ 2-dimensional array A[i , j]: the elevation of center of cell (i , j)

▶ 200km x 100km, cell size 1m x 1m, 8bytes per cell → 160 GB
(doesn’t fit into RAM)

16/55

Sorting and Scanning

sum = 0;
for i = 1 to N do

sum = sum + A[i];

I/Os for scanning N data items: scan(N) = Θ(N/B).

How to obtain the O(N/B) upper-bound for scanning?
Bring B contiguous elements in internal memory using a single I/O;
do a simple memory access, rather than an expensive disk I/O.

Difference between N and N/B: N = 256x106, B = 8000, 1ms
disk access time

▶ N I/Os takes 256x103 s = 4266 min = 71h

▶ N/B I/Os takes 256/8s = 32s

17/55

Sorting and Scanning

The I/O complexity of sorting n elements:
sort(n) = Θ(nB logM/B

n
B).

Merge-sort: in the run formation phase, the input data is
partitioned into sorted sequences (”runs”); in the merging phase,
the runs are merged until one sorted run remains.
▶ External memory sorting algorithm (Aggarwal&Vitter ’88):

▶ the 1st phase produces sorted runs of M elements
▶ the 2nd phase does a M

B -way merge

O(nB logM/B
n
B) I/Os

▶ In the cache-oblivious setting, funnel-sort and lazy funnelsort,
lead to sorting algorithms with a similar I/O complexity.

18/55

External Merge-sort

5GB of data (files on disk)
1GB RAM

1. divide in 5 files (1GB each)
load in RAM each file, sort, write on disk
(F1 sorted , . . . ,F5 sorted)

2. load in RAM first 150MB from each sorted file Fi sorted
→ 250MB free
5-way merge → write to disk

19/55

Sorting and Scanning

On large data sets, scan(n) < sort(n)≪ n, for all practical values
of B, M and n.

Reading and writing data in sequential order/sorting the data is
less expensive than accessing data at random.

20/55

Remove duplicates (1)

▶ Read one page in memory from the input file:

for i = 1 to numPages(A) do
p ← read the next page from A;
read pages i + 1, . . . , numPages(A), using m − 1 pages as a
read buffer;
clean p from duplicates;
write the remaining records of p to the end of the output
(beginning of A);

θ(n2) I/O operations, n # pages in the input file

21/55

Remove duplicates (2)

▶ Read m − 1 pages in memory, use 1 page as read buffer:

for i = 1 to ⌈numPages(A)/(m − 1)⌉ do
B ← read the next m − 1 pages from A;
read pages i(m − 1) + 1, . . . , numPages(A), using 1 page as a
read buffer;
clean B from duplicates;
write the remaining records of B to the end of the output
(beginning of A);

θ(n2/m) I/O operations

22/55

Content

Introduction

Memory Hierarchy Models

Fundamental Techniques

External Memory Data Structures

Cache-aware Optimization

Cache-Oblivious Algorithms and Data Structures

23/55

Stacks and Queues

Represent dynamic sets of elements (LIFO/FIFO); implement them
using an array of length n and pointers → 1 I/O per INSERT
and DELETE in worst-case.

Stack: keep a buffer of size 2B in the internal memory; it contains
k most recently added elements, k ≤ 2B.

▶ INSERT : no I/Os, except when the buffer runs full
1 I/O to write B least recent elements to a block in EM

▶ REMOVE : no I/Os, except when the buffer is empty
1 I/O to retrieve the block of B elements most recently
written to EM

Any sequence of B INSERT/DELETE operations need at most
one I/O; the amortized cost per operation: 1/B I/Os.

24/55

Stacks and Queues

Queues: 2 buffers, a read and a write buffer of size B consisting
of least, respectively most recently inserted elements.

▶ INSERT to the write buffer (when full, write to EM).

▶ REMOVE : work on the read buffer; no I/O until the buffer is
empty (read the appropriate EM block).

Amortized complexity of 1/B I/Os per operation.

25/55

Linked Lists

An efficient implementation of ordered lists of elements: sequential
SEARCH, DELETE and INSERT in arbitrary locations. Perform 1
I/O every time a pointer is followed.

An I/O-efficient implementation of linked lists: keep the elements
in blocks; invariant: there are more than 2

3B elements in every pair
of consecutive blocks.

▶ INSERT : 1 I/O, if the block is not full; otherwise, if any of its
two neighbors has spare capacity, push an element to that
block; otherwise, split the block.

▶ DELETE : check if the operation results in violating the
invariant; if so, merge the two violating blocks.

O(1) I/O INSERT, DELETE, MERGE, SPLIT; O(i/B) I/O access
the i th element.

26/55

B-tree

Storing binary trees arbitrarily in external memory: O(log2N) I/Os
per query/update.

In external memory, B-tree is the basis for a wide range of efficient
queries on sets. A balanced BST of degree θ(B):

▶ n data items are stored in sorted order in θ(n/B) leaves; each
leaf: θ(B) elements

▶ leaves are on the same level; the tree height O(logBn).

27/55

B-tree

O(logBn) I/O INSERT, DELETE and SEARCH.

▶ SEARCH: traverse the tree from the root to the appropriate
leaf in O(logBn) I/Os.

One-dimensional range queries: O(logBn+ T/B) I/Os, T the
output size.

28/55

B-tree

▶ INSERT
1. Search the relevant leaf l
2. If it is not full, insert the new element
3. Otherwise, split l into leaves l ′ and l” of approx. the same size

and insert the element in the relevant leaf.
The split results in the insertion of a new routing element in
the parent of l ; the need for a split may propagate up the tree
(the height of the tree grows by 1).

Complexity: O(logBn) I/Os.

29/55

B-tree

▶ DELETE : search the appropriate leaf and remove the element;
if too few elements in the leaf, fuse it with one of its siblings;
Fuse operations may propagate up the tree (the height of the
tree decreases by 1).

Complexity: O(logBn) I/Os.

30/55

Content

Introduction

Memory Hierarchy Models

Fundamental Techniques

External Memory Data Structures

Cache-aware Optimization

Cache-Oblivious Algorithms and Data Structures

31/55

Cache-aware Optimization

Caches are part of the memory hierarchy between registers and the
main memory.

Cache miss

▶ if the code does not respect the locality properties, a required
data item is likely to be not in the cache

▶ load contiguous data words from memory into cache

Detecting poor cache performance

▶ the cache simulator cachegrind from Valgrind tool suite1

performs simulations of L1 and L2 cache to determine the
origins of cache misses; kcachegrind2 - profile data
visualization

1http://valgrind.org/info/tools.html
2https://github.com/KDE/kcachegrind

32/55

Fundamental Cache-Aware Techniques

Loop Interchange and Array Transpose

▶ Since data is fetched blockwise into the cache, access
contiguous data consecutively.

▶ Cache miss: if the data access doesn’t respect the data
layout, memory references aren’t performed on contiguous
data.
Solution: access A[i][j] accordant to row-major.

Stride: the distance of array elements in memory, accessed within consecutive loop

iterations.

33/55

Fundamental Cache-Aware Techniques

Loop fusion: combines 2 loops (executed after another, with the
same iteration space) into a loop

▶ the transformation is legal if no dependencies from the 1st

loop to the 2nd one

▶ a higher instruction level parallelism; reduces the loop
overhead; may improve data locality

34/55

Fundamental Cache-Aware Techniques

Array merging : if the elements of a and b are typically accessed
together,

instead of declaring 2 arrays with the same dimension and type
double a[n], b[n],

combine them to one multidimensional array (double ab[n][2])

35/55

Cache-aware Optimization

Array Padding
Inter-array padding inserts unused variables (pads) between 2
arrays to avoid cross interference (both arrays are mapped to
different parts of the cache).

36/55

Cache-Aware Numerical Linear Algebra

Computational kernels in linear algebra that achieve a high cache
performance:

▶ Basic Linear Algebra Subprograms (BLAS)1 - basic vector and
matrix operations

▶ Linear Algebra Package (LAPACK)2 - solvers for linear
equations, linear least-square and eigenvalue problems, etc.

▶ Automatically Tuned Linear Algebra Software (ATLAS)3 -
determines the hardware parameters during its installation and
adapts its parameters accordingly to achieve a high cache
efficiency on a variety of platforms

1http://www.netlib.org/blas/
2http://www.netlib.org/lapack/
3http://math-atlas.sourceforge.net/

37/55

Cache-Aware Numerical Linear Algebra

Loop blocking : for the improvement of data access and therefore
temporal locality in loop nests.

Changes the way in which the matrix and the corresponding vector
elements are accessed:

▶ rather than iterating over one row after the other, the matrix
is divided into small block matrices that fit into the cache

▶ new inner loops that iterate within the blocks are introduced
into the original one

38/55

Loop blocking

The outer loop traverses the original iteration space with an increment
equal to the size B of the block which is traversed by the inner loop.

39/55

Matrix transposition

Matrix A[m,m], AT [i , j] = A[j , i], for all i , j
Goal: convert A to AT

▶ size of the matrix n = m2

▶ matrix is stored in row-major order

▶ cannot keep one column in memory

for i = 1 to m − 1 do
for j = 0 to i − 1 do

swap A[i , j] and A[j , i];

▶ for A[i , j]: blocks are read at most once, O(n/B) I/Os

▶ for A[j , i]: blocks are read many times, O(n) I/Os

40/55

A cache-aware algorithm for matrix transposition

▶ partition matrix into tiles Ti ,j of size t × t

▶ 2 tiles should fit into main memory

▶ # tiles: ⌈m/t⌉ × ⌈m/t⌉ = O(n/t2)

41/55

A cache-aware algorithm for matrix transposition1

t = ...;
for i = 0 to ⌈m/t⌉ do

for j = 0 to i do
read tiles Ti ,j and Tj ,i ;
swap elements in tiles;
write tiles back to disk;

O(n/B) I/Os
Pick tile size s.t. 2 tiles fit into internal memory: t ≈

√
M/2.

1I/O-efficient algorithms course

https://www.coursera.org/learn/io-efficient-algorithms

42/55

Content

Introduction

Memory Hierarchy Models

Fundamental Techniques

External Memory Data Structures

Cache-aware Optimization

Cache-Oblivious Algorithms and Data Structures

43/55

Cache-Oblivious Algorithms

The portability of cache-aware optimization methods from one
machine to another is often difficult

▶ interested in algorithms that don’t require specific
hardware parameters

Idea:

▶ use a recursive algorithm: recursion will reach a point where
the subproblem fits into the internal memory

44/55

a. Cache-oblivious matrix transposition2

▶ To swap two matrices: swap 4 pairs of submatrices of 1/2 size
→ 4 recursive calls

▶ Base case: submatrix of 1× 1

Exception: the cells on the diagonal (3 recursive calls).

2I/O-efficient algorithms

https://www.coursera.org/learn/io-efficient-algorithms

45/55

Cache-oblivious matrix transposition

//swap A[i1...i2, j1...j2] with A[j1...j2, i1...i2];
if i1 = i2 or j1 = j2 then

swap A[i1...i2, j1...j2] with A[j1...j2, i1...i2];
else

imid ← ⌊ i1+i2
2 ⌋, jmid ← ⌊ j1+j2

2 ⌋;
Cache-obliv-transpose(A, i1, imid , j1, jmid);
Cache-obliv-transpose(A, imid+1, i2, j1, jmid);
Cache-obliv-transpose(A, imid+1, i2, jmid+1, j2);
if i1 ≥ jmid + 1 then

Cache-obliv-transpose(A, i1, imid , jmid+1, j2);
Algorithm 1: Cache-obliv-transpose(A, i1, i2, j1, j2)

O(n/B)I/Os

46/55

b. Cache-Oblivious matrix multiplication

A,B n × n matrices stored in the memory. Compute the matrix
product C := AB.

for i = 1 to n do
for j = 1 to n do

C [i , j]← 0.0;
for k = 1 to n do

C [i , j] = C [i , j] + A[i , k] · B[k , j];
Algorithm 2: Naive matrix multiplication

Two arrays of length n are accessed at the same time, one with
stride 1, another with stride n.
Apply loop blocking : cached entries of all matrices can be reused.

47/55

Cache-oblivious matrix multiplication algorithm3

A cache-oblivious blocking of the main loop can be achieved by
recursive block building.

Guide this recursion by space-filling curves

▶ a method based on the Peano curve to increase spatial and
temporal locality

3Cache Oblivious Matrix Operations Using Peano Curves

https://pancake.hpc2n.umu.se/sites/default/files/events/para06/papers/paper_248.pdf

48/55

Cache-oblivious matrix multiplication algorithm

Cache-efficient computation: processing of matrix blocks.

▶ Matrices are subdivided recursively into nx × ny block
matrices, until small enough (some fraction of the cache size).

▶ Any block size nx × ny , nx , ny odd.

▶ 9 recursive blocks; the recursion stops with submatrices of
3x3.

49/55

Cache-oblivious matrix multiplication algorithm

Each submatrix of 3 x 3 is stored in a Peano-like ordering :a0 a5 a6
a1 a4 a7
a2 a3 a8

 ·
b0 b5 b6
b1 b4 b7
b2 b3 b8

 =

c0 c5 c6
c1 c4 c7
c2 c3 c8


Find an operation order where consecutive triples differ by no more
than 1 in each element (for spatial & temporal locality).

Similarly for the outer iteration: the blocks are also accessed in the
Peano order due to the recursive construction.

50/55

c. Funnel sort: a cache-oblivious version of Mergesort4

To sort a (contiguous) array of n elements:

1. split the input into n1/3 contiguous arrays, of size n2/3

2. sort the arrays recursively

3. merge the n1/3 sorted sequences using a n1/3-merger.

A k-merger inputs k sorted sequences and merges them
(recursively).

Invariant: Each invocation of a k-merger outputs the next k3

elements of the sorted sequence, obtained by merging the k input
sequences.

4Cache-Oblivious Algorithms and Data Structures

https://erikdemaine.org/papers/BRICS2002/paper.pdf

51/55

Funnel sort

A k-merger is built recursively out of
√
k-mergers:

▶ k inputs are partitioned into
√
k sets of

√
k elements

(the input to the
√
k
√
k-mergers L1, ...L√k).

▶ The outputs of the mergers are connected to the inputs of
√
k

buffers (a queue that can hold 2k3/2 elements).

▶ The outputs of the buffers are connected to the
√
k inputs of

the
√
k-merger R.

The base case of the recursion is a k-merger with k = 2, which
produces k3 = 8 elements.

52/55

Funnel sort

A k-merger operates recursively: the k-merger invokes R for
k3/2 times to output k3 elements.

▶ before each invocation, the k-merger fills all buffers that are
less than half full (contain less than k3/2 elements)

▶ to fill buffer i , the algorithm invokes the merger Li once; since
Li outputs k

3/2 elements, the buffer contains at least k3/2

elements after Li finishes

53/55

Funnel sort

A careful implementation of a cache-oblivious lazy funnel sort
outperforms library implementations of quicksort on uniformly
distributed data

▶ for the largest instances in the RAM, it outperforms
std::sort from the STL library, GCC 3.2, by 10-40%

54/55

Lazy Funnel sort

Modification: a buffer is filled when it runs empty.
A tree of binary mergers with buffers on the edges.

A k-merger : a perfectly balanced binary tree with k leaves

▶ a leaf contains a sorted input stream; an internal node
contains a binary merger

▶ output of the root: output stream of the k-merger

▶ the edge between two internal nodes contains a buffer

55/55

Bibliography

▶ Algorithm Engineering: Bridging the Gap Between Algorithm
Theory and Practice - Chapter 5. Realistic Computer Models

	Introduction
	Memory Hierarchy Models
	Fundamental Techniques
	External Memory Data Structures
	Cache-aware Optimization
	Cache-Oblivious Algorithms and Data Structures

